User:Michael Roberts/BIOL115 CaM

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 56: Line 56:
'''CALMODULIN INTERACTS WITH ITS TARGET:'''
'''CALMODULIN INTERACTS WITH ITS TARGET:'''
-
The Ca<sup>2+</sup>-bound form of calmodulin with its exposed hydrophobic surfaces that you have already observed can <scene name='User:Michael_Roberts/BIOL115_CaM/Active_calmodulin/1'>interact with a target protein</scene>. It does this by wrapping around a specific sequence on the target molecule, forcing it to adopt an α-helical structure.
+
The Ca<sup>2+</sup>-bound form of calmodulin with its exposed hydrophobic surfaces that you have already observed can <scene name='User:Michael_Roberts/BIOL115_CaM/Active_calmodulin/1'>interact with a target protein</scene>. It does this by wrapping around a specific sequence on the target molecule, which is then forced into an α-helical structure.
The target molecule here (shown in blue) is the calmodulin-regulated enzyme, myosin light chain kinase. Only a short sequence from this protein, the calmodulin binding domain, is shown.
The target molecule here (shown in blue) is the calmodulin-regulated enzyme, myosin light chain kinase. Only a short sequence from this protein, the calmodulin binding domain, is shown.

Revision as of 16:28, 3 May 2013

Crystal Structure of Calmodulin 1cll
Crystal Structure of Calmodulin 1cll

Sequence and structure of EF hands


The EF hand motif is present in a many proteins and it commonly bestows the ability to bind Ca2+ ions. It was first identified in parvalbumin, a muscle protein. Here we'll have a look at the Ca2+-binding protein calmodulin, which possesses four EF hands. Calmodulin and its isoform, troponinC, are important intracellular Ca2+-binding proteins.

The structure below, obtained by X-ray crystallography, represents the Ca2+-binding protein calmodulin. It has a dumbell-shaped structure with two identical lobes connected by a central alpha-helix. Each lobe comprises three α-helices joined by loops. A helix-loop-helix motif forms the basis of each EF hand.


Click on the 'green links' in the text in the scrollable section below to examine this molecule in more detail.

Structure of human calmodulin (PDB entry 1cll)

Drag the structure with the mouse to rotate

External Resources. You can view a nice animation of the conformational change undergone by calmodulin upon calcium binding by following this link [1].

Proteopedia Page Contributors and Editors (what is this?)

Michael Roberts

Personal tools