4lii
From Proteopedia
Line 1: | Line 1: | ||
- | + | {{STRUCTURE_4lii| PDB=4lii | SCENE= }} | |
+ | ===Crystal structure of an apoptosis-inducing factor, mitochondrion-associated, 1 (AIFM1) from Homo sapiens at 1.88 A resolution=== | ||
- | + | ==Disease== | |
+ | [[http://www.uniprot.org/uniprot/AIFM1_HUMAN AIFM1_HUMAN]] Defects in AIFM1 are the cause of combined oxidative phosphorylation deficiency type 6 (COXPD6) [MIM:[http://omim.org/entry/300816 300816]]. It is a mitochondrial disease resulting in a neurodegenerative disorder characterized by psychomotor delay, hypotonia, areflexia, muscle weakness and wasting.<ref>PMID:20362274</ref> <ref>PMID:22019070</ref> | ||
- | + | ==Function== | |
+ | [[http://www.uniprot.org/uniprot/AIFM1_HUMAN AIFM1_HUMAN]] Probable oxidoreductase that has a dual role in controlling cellular life and death; during apoptosis, it is translocated from the mitochondria to the nucleus to function as a proapoptotic factor in a caspase-independent pathway, while in normal mitochondria, it functions as an antiapoptotic factor via its oxidoreductase activity. The soluble form (AIFsol) found in the nucleus induces 'parthanatos' i.e. caspase-independent fragmentation of chromosomal DNA. Interacts with EIF3G,and thereby inhibits the EIF3 machinery and protein synthesis, and activates casapse-7 to amplify apoptosis. Plays a critical role in caspase-independent, pyknotic cell death in hydrogen peroxide-exposed cells. Binds to DNA in a sequence-independent manner.<ref>PMID:17094969</ref> <ref>PMID:19418225</ref> <ref>PMID:20362274</ref> | ||
- | + | ==About this Structure== | |
+ | [[4lii]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4LII OCA]. | ||
+ | |||
+ | ==Reference== | ||
+ | <references group="xtra"/><references/> | ||
+ | [[Category: Homo sapiens]] | ||
+ | [[Category: JCSG, Joint Center for Structural Genomics.]] | ||
+ | [[Category: TCELL, Partnership for T-Cell Biology.]] | ||
+ | [[Category: Apoptosis]] | ||
+ | [[Category: Fad/nad-linked reductase]] | ||
+ | [[Category: Flavoprotein]] | ||
+ | [[Category: Jcsg]] | ||
+ | [[Category: Joint center for structural genomic]] | ||
+ | [[Category: Oxidoreductase]] | ||
+ | [[Category: Protein structure initiative]] | ||
+ | [[Category: Psi-biology]] | ||
+ | [[Category: Structural genomic]] |
Revision as of 11:01, 4 September 2013
Contents |
Crystal structure of an apoptosis-inducing factor, mitochondrion-associated, 1 (AIFM1) from Homo sapiens at 1.88 A resolution
Disease
[AIFM1_HUMAN] Defects in AIFM1 are the cause of combined oxidative phosphorylation deficiency type 6 (COXPD6) [MIM:300816]. It is a mitochondrial disease resulting in a neurodegenerative disorder characterized by psychomotor delay, hypotonia, areflexia, muscle weakness and wasting.[1] [2]
Function
[AIFM1_HUMAN] Probable oxidoreductase that has a dual role in controlling cellular life and death; during apoptosis, it is translocated from the mitochondria to the nucleus to function as a proapoptotic factor in a caspase-independent pathway, while in normal mitochondria, it functions as an antiapoptotic factor via its oxidoreductase activity. The soluble form (AIFsol) found in the nucleus induces 'parthanatos' i.e. caspase-independent fragmentation of chromosomal DNA. Interacts with EIF3G,and thereby inhibits the EIF3 machinery and protein synthesis, and activates casapse-7 to amplify apoptosis. Plays a critical role in caspase-independent, pyknotic cell death in hydrogen peroxide-exposed cells. Binds to DNA in a sequence-independent manner.[3] [4] [5]
About this Structure
4lii is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA.
Reference
- ↑ Ghezzi D, Sevrioukova I, Invernizzi F, Lamperti C, Mora M, D'Adamo P, Novara F, Zuffardi O, Uziel G, Zeviani M. Severe X-linked mitochondrial encephalomyopathy associated with a mutation in apoptosis-inducing factor. Am J Hum Genet. 2010 Apr 9;86(4):639-49. doi: 10.1016/j.ajhg.2010.03.002. Epub, 2010 Apr 1. PMID:20362274 doi:10.1016/j.ajhg.2010.03.002
- ↑ Berger I, Ben-Neriah Z, Dor-Wolman T, Shaag A, Saada A, Zenvirt S, Raas-Rothschild A, Nadjari M, Kaestner KH, Elpeleg O. Early prenatal ventriculomegaly due to an AIFM1 mutation identified by linkage analysis and whole exome sequencing. Mol Genet Metab. 2011 Dec;104(4):517-20. doi: 10.1016/j.ymgme.2011.09.020. Epub, 2011 Sep 24. PMID:22019070 doi:10.1016/j.ymgme.2011.09.020
- ↑ Kim JT, Kim KD, Song EY, Lee HG, Kim JW, Kim JW, Chae SK, Kim E, Lee MS, Yang Y, Lim JS. Apoptosis-inducing factor (AIF) inhibits protein synthesis by interacting with the eukaryotic translation initiation factor 3 subunit p44 (eIF3g). FEBS Lett. 2006 Nov 27;580(27):6375-83. Epub 2006 Nov 3. PMID:17094969 doi:10.1016/j.febslet.2006.10.049
- ↑ Son YO, Jang YS, Heo JS, Chung WT, Choi KC, Lee JC. Apoptosis-inducing factor plays a critical role in caspase-independent, pyknotic cell death in hydrogen peroxide-exposed cells. Apoptosis. 2009 Jun;14(6):796-808. doi: 10.1007/s10495-009-0353-7. PMID:19418225 doi:10.1007/s10495-009-0353-7
- ↑ Ghezzi D, Sevrioukova I, Invernizzi F, Lamperti C, Mora M, D'Adamo P, Novara F, Zuffardi O, Uziel G, Zeviani M. Severe X-linked mitochondrial encephalomyopathy associated with a mutation in apoptosis-inducing factor. Am J Hum Genet. 2010 Apr 9;86(4):639-49. doi: 10.1016/j.ajhg.2010.03.002. Epub, 2010 Apr 1. PMID:20362274 doi:10.1016/j.ajhg.2010.03.002