2ogr
From Proteopedia
(New page: 200px<br /><applet load="2ogr" size="350" color="white" frame="true" align="right" spinBox="true" caption="2ogr, resolution 1.800Å" /> '''Crystal Structure o...) |
|||
Line 4: | Line 4: | ||
==Overview== | ==Overview== | ||
- | The three-dimensional structure of yellow fluorescent proteins zYFP538 | + | The three-dimensional structure of yellow fluorescent proteins zYFP538 (zFP538) from the button polyp Zoanthus sp. was determined at a resolution of 1.8 angstrom by X-ray analysis. The monomer of zYFP538 adopts a structure characteristic of the green fluorescent protein (GFP) family, a beta-barrel formed from 11 antiparallel beta segments and one internal alpha helix with a chromophore embedded into it. Like the TurboGFP, the beta-barrel of zYFP538 contains a water-filled pore leading to the chromophore Tyr67 residue, which presumably provides access of molecular oxygen necessary for the maturation process. The post-translational modification of the chromophore-forming triad Lys66-Tyr67-Gly68 results in a tricyclic structure consisting of a five-membered imidazolinone ring, a phenol ring of the Tyr67 residue, and an additional six-membered tetrahydropyridine ring. The chromophore formation is completed by cleavage of the protein backbone at the Calpha-N bond of Lys66. It was suggested that the energy conflict between the buried positive charge of the intact Lys66 side chain in the hydrophobic pocket formed by the Ile44, Leu46, Phe65, Leu204 and Leu219 side chains is the most probable trigger that induces the transformation of the bicyclic green form to the tricyclic yellow form. A stereochemical analysis of the contacting surfaces at the intratetramer interfaces helped reveal a group of conserved key residues responsible for the oligomerization. Along with others, these residues should be taken into account in designing monomeric forms suitable for practical application as markers of proteins and cell organelles. |
==About this Structure== | ==About this Structure== | ||
Line 13: | Line 13: | ||
[[Category: Single protein]] | [[Category: Single protein]] | ||
[[Category: Zoanthus sp.]] | [[Category: Zoanthus sp.]] | ||
- | [[Category: Pletnev, S | + | [[Category: Pletnev, S V.]] |
- | [[Category: Pletnev, V | + | [[Category: Pletnev, V Z.]] |
- | [[Category: Pletneva, N | + | [[Category: Pletneva, N V.]] |
- | [[Category: Tikhonova, T | + | [[Category: Tikhonova, T V.]] |
[[Category: chromophore structure]] | [[Category: chromophore structure]] | ||
[[Category: gfp-like proteins]] | [[Category: gfp-like proteins]] | ||
Line 24: | Line 24: | ||
[[Category: zoanthus sp.]] | [[Category: zoanthus sp.]] | ||
- | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on | + | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Feb 21 18:18:17 2008'' |
Revision as of 16:18, 21 February 2008
|
Crystal Structure of Yellow Fluorescent Protein from Zoanthus sp. at 1.8 A Resolution
Overview
The three-dimensional structure of yellow fluorescent proteins zYFP538 (zFP538) from the button polyp Zoanthus sp. was determined at a resolution of 1.8 angstrom by X-ray analysis. The monomer of zYFP538 adopts a structure characteristic of the green fluorescent protein (GFP) family, a beta-barrel formed from 11 antiparallel beta segments and one internal alpha helix with a chromophore embedded into it. Like the TurboGFP, the beta-barrel of zYFP538 contains a water-filled pore leading to the chromophore Tyr67 residue, which presumably provides access of molecular oxygen necessary for the maturation process. The post-translational modification of the chromophore-forming triad Lys66-Tyr67-Gly68 results in a tricyclic structure consisting of a five-membered imidazolinone ring, a phenol ring of the Tyr67 residue, and an additional six-membered tetrahydropyridine ring. The chromophore formation is completed by cleavage of the protein backbone at the Calpha-N bond of Lys66. It was suggested that the energy conflict between the buried positive charge of the intact Lys66 side chain in the hydrophobic pocket formed by the Ile44, Leu46, Phe65, Leu204 and Leu219 side chains is the most probable trigger that induces the transformation of the bicyclic green form to the tricyclic yellow form. A stereochemical analysis of the contacting surfaces at the intratetramer interfaces helped reveal a group of conserved key residues responsible for the oligomerization. Along with others, these residues should be taken into account in designing monomeric forms suitable for practical application as markers of proteins and cell organelles.
About this Structure
2OGR is a Single protein structure of sequence from Zoanthus sp.. Full crystallographic information is available from OCA.
Reference
[Three-dimensional structure of yellow fluorescent protein zYFP538 from Zoanthus sp. at the resolution 1.8 angstrom], Pletneva NV, Pletnev SV, Chudakov DM, Tikhonova TV, Popov VO, Martynov VI, Wlodawer A, Dauter Z, Pletnev VZ, Bioorg Khim. 2007 Jul-Aug;33(4):421-30. PMID:17886433
Page seeded by OCA on Thu Feb 21 18:18:17 2008