15.5kD/Snu13/L7Ae protein

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
m
Line 2: Line 2:
== Structure of the protein homologues: 15.5kD, Snu13, and L7Ae ==
== Structure of the protein homologues: 15.5kD, Snu13, and L7Ae ==
-
by Kelly Hrywkiw
 
__TOC__
__TOC__
=Introduction=
=Introduction=
-
The human protein 15.5kD and its yeast (Snu13p) and archaeal (L7Ae) homologues function in the processing of pre-ribosomal RNA as part of the box [http://en.wikipedia.org/wiki/Small_nucleolar_RNA#C.2FD_box C/D] and [http://en.wikipedia.org/wiki/Small_nucleolar_RNA#H.2FACA_box H/ACA] small ribonucleoprotein particle (sRNP – [http://en.wikipedia.org/wiki/Archaea archaea]) or small nucleolar ribonucleoprotein particle (snoRNP – [http://en.wikipedia.org/wiki/Eukarya eukarya]) nucleotide modification complexes (s(no)RNPs)<ref name ="gagnon">PMCID:PMC2802039</ref><ref name ="dobbyn">PMID:17631273</ref>. In addition, 15.5kD and Snu13p function in U4 [http://en.wikipedia.org/wiki/SnRNP small nuclear ribonucleoprotein particle] (snRNP) spliceosomal biogenesis<ref name ="dobbyn"/>. The capability to function in dual roles lies in the ability to recognize a helix-bulge-helix (kink-turn) RNA motif that is present in the different RNPs<ref name ="oruganti">PMID:15963469</ref>
+
The human protein 15.5kD and its yeast (Snu13p) and archaeal (L7Ae) homologues function in the processing of pre-ribosomal RNA as part of the box [http://en.wikipedia.org/wiki/Small_nucleolar_RNA#C.2FD_box C/D] and [http://en.wikipedia.org/wiki/Small_nucleolar_RNA#H.2FACA_box H/ACA] small ribonucleoprotein particle (sRNP – [http://en.wikipedia.org/wiki/Archaea archaea]) or small nucleolar ribonucleoprotein particle (snoRNP – [http://en.wikipedia.org/wiki/Eukarya eukarya]) nucleotide modification complexes (s(no)RNPs)<ref name ="gagnon">PMCID:PMC2802039</ref><ref name ="dobbyn">PMID:17631273</ref>. In addition, 15.5kD and Snu13p function in U4 [http://en.wikipedia.org/wiki/SnRNP small nuclear ribonucleoprotein particle] (snRNP) spliceosomal biogenesis<ref name ="dobbyn"/>. The capability to function in dual roles lies in the ability to recognize a [[Kink-turn motif|helix-bulge-helix (kink-turn) RNA motif]] that is present in the different RNPs<ref name ="oruganti">PMID:15963469</ref>
-
A variation of the kink-turn motif, known as the kink-loop motif, can be found in the C/D and H/ACA RNAs <ref name ="gagnon"/>. Interestingly, the eukaryotic proteins and their archaeal homologue do not interact with the different motifs in the same manner, even though share a conserved sequence similarity <ref name ="oruganti"/>. For example, while L7Ae exhibits the same binding affinity for both the kink-turn and kink-loop sRNA motifs, its eukaryotic homologues only bind specifically to the kink-turn motif and discriminate against the kink-loop motif <ref name ="oruganti"/><ref name ="gagnon"/>.
+
A variation of the [[Kink-turn motif|kink-turn motif]], known as the kink-loop motif, can be found in the C/D and H/ACA RNAs <ref name ="gagnon"/>. Interestingly, the eukaryotic proteins and their archaeal homologue do not interact with the different motifs in the same manner, even though share a conserved sequence similarity <ref name ="oruganti"/>. For example, while L7Ae exhibits the same binding affinity for both the [[Kink-turn motif|kink-turn]] and kink-loop sRNA motifs, its eukaryotic homologues only bind specifically to the [[Kink-turn motif|kink-turn motif]] and discriminate against the kink-loop motif <ref name ="oruganti"/><ref name ="gagnon"/>.
Solved structures of the proteins include: 15.5kD in complex with a U4 snRNA fragment [[1E7K]], 15.5kD in complex with hPrp31 and a U4 snRNA fragment [[2OZB]], Snu13p without RNA [[1ZWZ]], [http://en.wikipedia.org/wiki/Archaeoglobus Archaeoglobus fulgidus] L7Ae-box C/D with RNA [[1RLG]], [http://en.wikipedia.org/wiki/Methanococcus_jannaschii Methanococcus jannaschii] L7Ae-H/ACA with RNA [[1RA4]], and [http://en.wikipedia.org/wiki/Pyrococcus Pyrococcus abyssi] L7Ae without RNA [[1PXW]].
Solved structures of the proteins include: 15.5kD in complex with a U4 snRNA fragment [[1E7K]], 15.5kD in complex with hPrp31 and a U4 snRNA fragment [[2OZB]], Snu13p without RNA [[1ZWZ]], [http://en.wikipedia.org/wiki/Archaeoglobus Archaeoglobus fulgidus] L7Ae-box C/D with RNA [[1RLG]], [http://en.wikipedia.org/wiki/Methanococcus_jannaschii Methanococcus jannaschii] L7Ae-H/ACA with RNA [[1RA4]], and [http://en.wikipedia.org/wiki/Pyrococcus Pyrococcus abyssi] L7Ae without RNA [[1PXW]].

Revision as of 00:54, 17 October 2013

Structure of 15.5kD bound with a U4 snRNP fragment (1e7k)

Drag the structure with the mouse to rotate

Additional Resources

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 PMCID:PMC2802039
  2. 2.0 2.1 2.2 Dobbyn HC, McEwan PA, Krause A, Novak-Frazer L, Bella J, O'Keefe RT. Analysis of pre-mRNA and pre-rRNA processing factor Snu13p structure and mutants. Biochem Biophys Res Commun. 2007 Sep 7;360(4):857-62. Epub 2007 Jul 9. PMID:17631273 doi:10.1016/j.bbrc.2007.06.163
  3. 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 Oruganti S, Zhang Y, Li H. Structural comparison of yeast snoRNP and spliceosomal protein Snu13p with its homologs. Biochem Biophys Res Commun. 2005 Jul 29;333(2):550-4. PMID:15963469 doi:10.1016/j.bbrc.2005.05.141
  4. 4.0 4.1 4.2 4.3 Venema J, Tollervey D. Ribosome synthesis in Saccharomyces cerevisiae. Annu Rev Genet. 1999;33:261-311. PMID:10690410 doi:10.1146/annurev.genet.33.1.261
  5. 5.0 5.1 5.2 5.3 5.4 Marmier-Gourrier N, Clery A, Senty-Segault V, Charpentier B, Schlotter F, Leclerc F, Fournier R, Branlant C. A structural, phylogenetic, and functional study of 15.5-kD/Snu13 protein binding on U3 small nucleolar RNA. RNA. 2003 Jul;9(7):821-38. PMID:12810916
  6. 6.0 6.1 6.2 6.3 6.4 6.5 van der Feltz C, Anthony K, Brilot A, Pomeranz Krummel DA. Architecture of the Spliceosome. Biochemistry. 2012 Apr 10. PMID:22471593 doi:10.1021/bi201215r
  7. 7.0 7.1 7.2 7.3 7.4 7.5 Sperling J, Azubel M, Sperling R. Structure and function of the Pre-mRNA splicing machine. Structure. 2008 Nov 12;16(11):1605-15. PMID:19000813 doi:10.1016/j.str.2008.08.011
  8. Zhang L, Xu T, Maeder C, Bud LO, Shanks J, Nix J, Guthrie C, Pleiss JA, Zhao R. Structural evidence for consecutive Hel308-like modules in the spliceosomal ATPase Brr2. Nat Struct Mol Biol. 2009 Jul;16(7):731-9. Epub 2009 Jun 14. PMID:19525970 doi:10.1038/nsmb.1625
  9. Zhang L, Xu T, Maeder C, Bud LO, Shanks J, Nix J, Guthrie C, Pleiss JA, Zhao R. Structural evidence for consecutive Hel308-like modules in the spliceosomal ATPase Brr2. Nat Struct Mol Biol. 2009 Jul;16(7):731-9. Epub 2009 Jun 14. PMID:19525970 doi:10.1038/nsmb.1625
  10. 10.00 10.01 10.02 10.03 10.04 10.05 10.06 10.07 10.08 10.09 10.10 10.11 Vidovic I, Nottrott S, Hartmuth K, Luhrmann R, Ficner R. Crystal structure of the spliceosomal 15.5kD protein bound to a U4 snRNA fragment. Mol Cell. 2000 Dec;6(6):1331-42. PMID:11163207

Proteopedia Page Contributors and Editors (what is this?)

Wayne Decatur, Kelly Hrywkiw, Alexander Berchansky

Personal tools