15.5kD/Snu13/L7Ae protein
From Proteopedia
(Difference between revisions)
m |
|||
Line 2: | Line 2: | ||
== Structure of the protein homologues: 15.5kD, Snu13, and L7Ae == | == Structure of the protein homologues: 15.5kD, Snu13, and L7Ae == | ||
- | by Kelly Hrywkiw | ||
__TOC__ | __TOC__ | ||
=Introduction= | =Introduction= | ||
- | The human protein 15.5kD and its yeast (Snu13p) and archaeal (L7Ae) homologues function in the processing of pre-ribosomal RNA as part of the box [http://en.wikipedia.org/wiki/Small_nucleolar_RNA#C.2FD_box C/D] and [http://en.wikipedia.org/wiki/Small_nucleolar_RNA#H.2FACA_box H/ACA] small ribonucleoprotein particle (sRNP – [http://en.wikipedia.org/wiki/Archaea archaea]) or small nucleolar ribonucleoprotein particle (snoRNP – [http://en.wikipedia.org/wiki/Eukarya eukarya]) nucleotide modification complexes (s(no)RNPs)<ref name ="gagnon">PMCID:PMC2802039</ref><ref name ="dobbyn">PMID:17631273</ref>. In addition, 15.5kD and Snu13p function in U4 [http://en.wikipedia.org/wiki/SnRNP small nuclear ribonucleoprotein particle] (snRNP) spliceosomal biogenesis<ref name ="dobbyn"/>. The capability to function in dual roles lies in the ability to recognize a helix-bulge-helix (kink-turn) RNA motif that is present in the different RNPs<ref name ="oruganti">PMID:15963469</ref> | + | The human protein 15.5kD and its yeast (Snu13p) and archaeal (L7Ae) homologues function in the processing of pre-ribosomal RNA as part of the box [http://en.wikipedia.org/wiki/Small_nucleolar_RNA#C.2FD_box C/D] and [http://en.wikipedia.org/wiki/Small_nucleolar_RNA#H.2FACA_box H/ACA] small ribonucleoprotein particle (sRNP – [http://en.wikipedia.org/wiki/Archaea archaea]) or small nucleolar ribonucleoprotein particle (snoRNP – [http://en.wikipedia.org/wiki/Eukarya eukarya]) nucleotide modification complexes (s(no)RNPs)<ref name ="gagnon">PMCID:PMC2802039</ref><ref name ="dobbyn">PMID:17631273</ref>. In addition, 15.5kD and Snu13p function in U4 [http://en.wikipedia.org/wiki/SnRNP small nuclear ribonucleoprotein particle] (snRNP) spliceosomal biogenesis<ref name ="dobbyn"/>. The capability to function in dual roles lies in the ability to recognize a [[Kink-turn motif|helix-bulge-helix (kink-turn) RNA motif]] that is present in the different RNPs<ref name ="oruganti">PMID:15963469</ref> |
- | A variation of the kink-turn motif, known as the kink-loop motif, can be found in the C/D and H/ACA RNAs <ref name ="gagnon"/>. Interestingly, the eukaryotic proteins and their archaeal homologue do not interact with the different motifs in the same manner, even though share a conserved sequence similarity <ref name ="oruganti"/>. For example, while L7Ae exhibits the same binding affinity for both the kink-turn and kink-loop sRNA motifs, its eukaryotic homologues only bind specifically to the kink-turn motif and discriminate against the kink-loop motif <ref name ="oruganti"/><ref name ="gagnon"/>. | + | A variation of the [[Kink-turn motif|kink-turn motif]], known as the kink-loop motif, can be found in the C/D and H/ACA RNAs <ref name ="gagnon"/>. Interestingly, the eukaryotic proteins and their archaeal homologue do not interact with the different motifs in the same manner, even though share a conserved sequence similarity <ref name ="oruganti"/>. For example, while L7Ae exhibits the same binding affinity for both the [[Kink-turn motif|kink-turn]] and kink-loop sRNA motifs, its eukaryotic homologues only bind specifically to the [[Kink-turn motif|kink-turn motif]] and discriminate against the kink-loop motif <ref name ="oruganti"/><ref name ="gagnon"/>. |
Solved structures of the proteins include: 15.5kD in complex with a U4 snRNA fragment [[1E7K]], 15.5kD in complex with hPrp31 and a U4 snRNA fragment [[2OZB]], Snu13p without RNA [[1ZWZ]], [http://en.wikipedia.org/wiki/Archaeoglobus Archaeoglobus fulgidus] L7Ae-box C/D with RNA [[1RLG]], [http://en.wikipedia.org/wiki/Methanococcus_jannaschii Methanococcus jannaschii] L7Ae-H/ACA with RNA [[1RA4]], and [http://en.wikipedia.org/wiki/Pyrococcus Pyrococcus abyssi] L7Ae without RNA [[1PXW]]. | Solved structures of the proteins include: 15.5kD in complex with a U4 snRNA fragment [[1E7K]], 15.5kD in complex with hPrp31 and a U4 snRNA fragment [[2OZB]], Snu13p without RNA [[1ZWZ]], [http://en.wikipedia.org/wiki/Archaeoglobus Archaeoglobus fulgidus] L7Ae-box C/D with RNA [[1RLG]], [http://en.wikipedia.org/wiki/Methanococcus_jannaschii Methanococcus jannaschii] L7Ae-H/ACA with RNA [[1RA4]], and [http://en.wikipedia.org/wiki/Pyrococcus Pyrococcus abyssi] L7Ae without RNA [[1PXW]]. |
Revision as of 00:54, 17 October 2013
|
Additional Resources
- CRYSTAL STRUCTURE OF THE SPLICEOSOMAL 15.5KD PROTEIN BOUND TO A U4 SNRNA FRAGMENT, in the RCSB Protein Data Bank
- Structure of a human Prp31-15.5K-U4 snRNA complex, in the RCSB Protein Data Bank
- Structural comparison of Yeast snoRNP and splicesomal protein snu13p with its homologs, in the RCSB Protein Data Bank
- Molecular basis of Box C/D RNA-protein interaction: co-crystal structure of the Archaeal sRNP intiation complex, in the RCSB Protein Data Bank
- Crystal structure of L7Ae sRNP core protein from Pyrococcus abyssii, in the RCSB Protein Data Bank
References
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 PMCID:PMC2802039
- ↑ 2.0 2.1 2.2 Dobbyn HC, McEwan PA, Krause A, Novak-Frazer L, Bella J, O'Keefe RT. Analysis of pre-mRNA and pre-rRNA processing factor Snu13p structure and mutants. Biochem Biophys Res Commun. 2007 Sep 7;360(4):857-62. Epub 2007 Jul 9. PMID:17631273 doi:10.1016/j.bbrc.2007.06.163
- ↑ 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 Oruganti S, Zhang Y, Li H. Structural comparison of yeast snoRNP and spliceosomal protein Snu13p with its homologs. Biochem Biophys Res Commun. 2005 Jul 29;333(2):550-4. PMID:15963469 doi:10.1016/j.bbrc.2005.05.141
- ↑ 4.0 4.1 4.2 4.3 Venema J, Tollervey D. Ribosome synthesis in Saccharomyces cerevisiae. Annu Rev Genet. 1999;33:261-311. PMID:10690410 doi:10.1146/annurev.genet.33.1.261
- ↑ 5.0 5.1 5.2 5.3 5.4 Marmier-Gourrier N, Clery A, Senty-Segault V, Charpentier B, Schlotter F, Leclerc F, Fournier R, Branlant C. A structural, phylogenetic, and functional study of 15.5-kD/Snu13 protein binding on U3 small nucleolar RNA. RNA. 2003 Jul;9(7):821-38. PMID:12810916
- ↑ 6.0 6.1 6.2 6.3 6.4 6.5 van der Feltz C, Anthony K, Brilot A, Pomeranz Krummel DA. Architecture of the Spliceosome. Biochemistry. 2012 Apr 10. PMID:22471593 doi:10.1021/bi201215r
- ↑ 7.0 7.1 7.2 7.3 7.4 7.5 Sperling J, Azubel M, Sperling R. Structure and function of the Pre-mRNA splicing machine. Structure. 2008 Nov 12;16(11):1605-15. PMID:19000813 doi:10.1016/j.str.2008.08.011
- ↑ Zhang L, Xu T, Maeder C, Bud LO, Shanks J, Nix J, Guthrie C, Pleiss JA, Zhao R. Structural evidence for consecutive Hel308-like modules in the spliceosomal ATPase Brr2. Nat Struct Mol Biol. 2009 Jul;16(7):731-9. Epub 2009 Jun 14. PMID:19525970 doi:10.1038/nsmb.1625
- ↑ Zhang L, Xu T, Maeder C, Bud LO, Shanks J, Nix J, Guthrie C, Pleiss JA, Zhao R. Structural evidence for consecutive Hel308-like modules in the spliceosomal ATPase Brr2. Nat Struct Mol Biol. 2009 Jul;16(7):731-9. Epub 2009 Jun 14. PMID:19525970 doi:10.1038/nsmb.1625
- ↑ 10.00 10.01 10.02 10.03 10.04 10.05 10.06 10.07 10.08 10.09 10.10 10.11 Vidovic I, Nottrott S, Hartmuth K, Luhrmann R, Ficner R. Crystal structure of the spliceosomal 15.5kD protein bound to a U4 snRNA fragment. Mol Cell. 2000 Dec;6(6):1331-42. PMID:11163207