15.5kD/Snu13/L7Ae protein
From Proteopedia
(Difference between revisions)
m (15.5kD/Snu13/L7Ae moved to 15.5kD/Snu13/L7Ae protein: Because it isn't just called '15.5kD' or 'Snu13'. It is 'Snu13 protein' or '15.5 kd protein'.) |
m |
||
Line 69: | Line 69: | ||
The structure itself may not the most important aspect when comparing the homologues, rather the amino acid composition. There are five amino acids located at the RNA binding region that are conserved within each of archaea and eukarya, however vary between the two. One such amino acid lies towards the N-terminal side of the RNA binding region, in L7Ae it is Lys26 (Methanocaldococcus jannashii), and in 15.5kD it is Gln34. Towards the C-terminal side of the RNA binding region located in loop 9 lie the four remaining residues Leu-Glu-Aal-Ala (L7Ae) and <scene name='Sandbox_503/Valserargpro/2'>Val95-Ser96-Arg97-Pro98 </scene>(15.5kD). It is the difference between these amino acids that allow L7Ae to bind the kink-loop motif<ref name ="m-g"/>. | The structure itself may not the most important aspect when comparing the homologues, rather the amino acid composition. There are five amino acids located at the RNA binding region that are conserved within each of archaea and eukarya, however vary between the two. One such amino acid lies towards the N-terminal side of the RNA binding region, in L7Ae it is Lys26 (Methanocaldococcus jannashii), and in 15.5kD it is Gln34. Towards the C-terminal side of the RNA binding region located in loop 9 lie the four remaining residues Leu-Glu-Aal-Ala (L7Ae) and <scene name='Sandbox_503/Valserargpro/2'>Val95-Ser96-Arg97-Pro98 </scene>(15.5kD). It is the difference between these amino acids that allow L7Ae to bind the kink-loop motif<ref name ="m-g"/>. | ||
</StructureSection> | </StructureSection> | ||
- | =Additional Resources= | ||
- | *[ | + | ==See Also== |
- | *[ | + | * [[Kink-turn motif]] |
- | *[ | + | * [[RNA motifs]] |
- | *[ | + | * [[Ribosome]] |
- | * | + | * [[Large Ribosomal Subunit of Haloarcula|The Large Ribosomal Subunit]] |
+ | * [[Ribozyme]] | ||
+ | * [[Group I intron]] | ||
+ | * [[Azoarcus group I intron]] | ||
+ | * [[1go1]], [[1go0]], [[1w3e]] and [[1h7m]] – the ''Thermococcus celer'' ribosomal protein L30<ref>PMID: 12627951</ref><ref>PMID: 12824494</ref> | ||
+ | * A-minor motif | ||
+ | * The adenosine wedge motif<ref>PMID: 20038632</ref> | ||
+ | * The G-ribo motif<ref>PMID: 17283211</ref> | ||
+ | * The lonepair triloop motif<ref>PMID: 12473452</ref> | ||
+ | * RNA ribose zipper<ref>PMID: 12096903</ref> | ||
+ | |||
=References= | =References= | ||
<References/> | <References/> | ||
+ | |||
+ | =Additional External Resources= | ||
+ | |||
+ | *[http://www.rcsb.org/pdb/explore/explore.do?structureId=1e7k CRYSTAL STRUCTURE OF THE SPLICEOSOMAL 15.5KD PROTEIN BOUND TO A U4 snRNA FRAGMENT, in the RCSB Protein Data Bank] | ||
+ | *[http://www.rcsb.org/pdb/explore/explore.do?structureId=2ozb Structure of a human Prp31-15.5K-U4 snRNA complex, in the RCSB Protein Data Bank] | ||
+ | *[http://www.rcsb.org/pdb/explore/explore.do?structureId=1zwz Structural comparison of Yeast snoRNP and splicesomal protein snu13p with its homologs, in the RCSB Protein Data Bank] | ||
+ | *[http://www.rcsb.org/pdb/explore/explore.do?structureId=1rlg Molecular basis of Box C/D RNA-protein interaction: co-crystal structure of the Archaeal sRNP intiation complex, in the RCSB Protein Data Bank] | ||
+ | *[http://www.rcsb.org/pdb/explore/explore.do?structureId=1pxw Crystal structure of L7Ae sRNP core protein from Pyrococcus abyssii, in the RCSB Protein Data Bank] |
Revision as of 01:01, 17 October 2013
|
See Also
- Kink-turn motif
- RNA motifs
- Ribosome
- The Large Ribosomal Subunit
- Ribozyme
- Group I intron
- Azoarcus group I intron
- 1go1, 1go0, 1w3e and 1h7m – the Thermococcus celer ribosomal protein L30[11][12]
- A-minor motif
- The adenosine wedge motif[13]
- The G-ribo motif[14]
- The lonepair triloop motif[15]
- RNA ribose zipper[16]
References
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 PMCID:PMC2802039
- ↑ 2.0 2.1 2.2 Dobbyn HC, McEwan PA, Krause A, Novak-Frazer L, Bella J, O'Keefe RT. Analysis of pre-mRNA and pre-rRNA processing factor Snu13p structure and mutants. Biochem Biophys Res Commun. 2007 Sep 7;360(4):857-62. Epub 2007 Jul 9. PMID:17631273 doi:10.1016/j.bbrc.2007.06.163
- ↑ 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 Oruganti S, Zhang Y, Li H. Structural comparison of yeast snoRNP and spliceosomal protein Snu13p with its homologs. Biochem Biophys Res Commun. 2005 Jul 29;333(2):550-4. PMID:15963469 doi:10.1016/j.bbrc.2005.05.141
- ↑ 4.0 4.1 4.2 4.3 Venema J, Tollervey D. Ribosome synthesis in Saccharomyces cerevisiae. Annu Rev Genet. 1999;33:261-311. PMID:10690410 doi:10.1146/annurev.genet.33.1.261
- ↑ 5.0 5.1 5.2 5.3 5.4 Marmier-Gourrier N, Clery A, Senty-Segault V, Charpentier B, Schlotter F, Leclerc F, Fournier R, Branlant C. A structural, phylogenetic, and functional study of 15.5-kD/Snu13 protein binding on U3 small nucleolar RNA. RNA. 2003 Jul;9(7):821-38. PMID:12810916
- ↑ 6.0 6.1 6.2 6.3 6.4 6.5 van der Feltz C, Anthony K, Brilot A, Pomeranz Krummel DA. Architecture of the Spliceosome. Biochemistry. 2012 Apr 10. PMID:22471593 doi:10.1021/bi201215r
- ↑ 7.0 7.1 7.2 7.3 7.4 7.5 Sperling J, Azubel M, Sperling R. Structure and function of the Pre-mRNA splicing machine. Structure. 2008 Nov 12;16(11):1605-15. PMID:19000813 doi:10.1016/j.str.2008.08.011
- ↑ Zhang L, Xu T, Maeder C, Bud LO, Shanks J, Nix J, Guthrie C, Pleiss JA, Zhao R. Structural evidence for consecutive Hel308-like modules in the spliceosomal ATPase Brr2. Nat Struct Mol Biol. 2009 Jul;16(7):731-9. Epub 2009 Jun 14. PMID:19525970 doi:10.1038/nsmb.1625
- ↑ Zhang L, Xu T, Maeder C, Bud LO, Shanks J, Nix J, Guthrie C, Pleiss JA, Zhao R. Structural evidence for consecutive Hel308-like modules in the spliceosomal ATPase Brr2. Nat Struct Mol Biol. 2009 Jul;16(7):731-9. Epub 2009 Jun 14. PMID:19525970 doi:10.1038/nsmb.1625
- ↑ 10.00 10.01 10.02 10.03 10.04 10.05 10.06 10.07 10.08 10.09 10.10 10.11 Vidovic I, Nottrott S, Hartmuth K, Luhrmann R, Ficner R. Crystal structure of the spliceosomal 15.5kD protein bound to a U4 snRNA fragment. Mol Cell. 2000 Dec;6(6):1331-42. PMID:11163207
- ↑ Chen YW, Bycroft M, Wong KB. Crystal structure of ribosomal protein L30e from the extreme thermophile Thermococcus celer: thermal stability and RNA binding. Biochemistry. 2003 Mar 18;42(10):2857-65. PMID:12627951 doi:10.1021/bi027131s
- ↑ Wong KB, Lee CF, Chan SH, Leung TY, Chen YW, Bycroft M. Solution structure and thermal stability of ribosomal protein L30e from hyperthermophilic archaeon Thermococcus celer. Protein Sci. 2003 Jul;12(7):1483-95. PMID:12824494 doi:10.1110/ps.0302303
- ↑ Gagnon MG, Steinberg SV. The adenosine wedge: a new structural motif in ribosomal RNA. RNA. 2010 Feb;16(2):375-81. Epub 2009 Dec 28. PMID:20038632 doi:10.1261/rna.1550310
- ↑ Steinberg SV, Boutorine YI. G-ribo: a new structural motif in ribosomal RNA. RNA. 2007 Apr;13(4):549-54. Epub 2007 Feb 5. PMID:17283211 doi:10.1261/rna.387107
- ↑ Lee JC, Cannone JJ, Gutell RR. The lonepair triloop: a new motif in RNA structure. J Mol Biol. 2003 Jan 3;325(1):65-83. PMID:12473452
- ↑ Tamura M, Holbrook SR. Sequence and structural conservation in RNA ribose zippers. J Mol Biol. 2002 Jul 12;320(3):455-74. PMID:12096903
Additional External Resources
- CRYSTAL STRUCTURE OF THE SPLICEOSOMAL 15.5KD PROTEIN BOUND TO A U4 snRNA FRAGMENT, in the RCSB Protein Data Bank
- Structure of a human Prp31-15.5K-U4 snRNA complex, in the RCSB Protein Data Bank
- Structural comparison of Yeast snoRNP and splicesomal protein snu13p with its homologs, in the RCSB Protein Data Bank
- Molecular basis of Box C/D RNA-protein interaction: co-crystal structure of the Archaeal sRNP intiation complex, in the RCSB Protein Data Bank
- Crystal structure of L7Ae sRNP core protein from Pyrococcus abyssii, in the RCSB Protein Data Bank