15.5kD/Snu13/L7Ae protein

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
m
Current revision (00:37, 18 October 2013) (edit) (undo)
m
 
Line 10: Line 10:
A variation of the [[Kink-turn motif|kink-turn motif]], known as the kink-loop motif, can be found in the C/D and H/ACA RNAs <ref name ="gagnon"/>. Interestingly, the eukaryotic proteins and their archaeal homologue do not interact with the different motifs in the same manner, even though share a conserved sequence similarity <ref name ="oruganti"/>. For example, while L7Ae exhibits the same binding affinity for both the [[Kink-turn motif|kink-turn]] and kink-loop sRNA motifs, its eukaryotic homologues only bind specifically to the [[Kink-turn motif|kink-turn motif]] and discriminate against the kink-loop motif <ref name ="oruganti"/><ref name ="gagnon"/>.
A variation of the [[Kink-turn motif|kink-turn motif]], known as the kink-loop motif, can be found in the C/D and H/ACA RNAs <ref name ="gagnon"/>. Interestingly, the eukaryotic proteins and their archaeal homologue do not interact with the different motifs in the same manner, even though share a conserved sequence similarity <ref name ="oruganti"/>. For example, while L7Ae exhibits the same binding affinity for both the [[Kink-turn motif|kink-turn]] and kink-loop sRNA motifs, its eukaryotic homologues only bind specifically to the [[Kink-turn motif|kink-turn motif]] and discriminate against the kink-loop motif <ref name ="oruganti"/><ref name ="gagnon"/>.
-
Solved structures of the proteins include: 15.5kD in complex with a U4 snRNA fragment [[1E7K]], 15.5kD in complex with hPrp31 and a U4 snRNA fragment [[2OZB]], Snu13p without RNA [[1ZWZ]], [http://en.wikipedia.org/wiki/Archaeoglobus Archaeoglobus fulgidus] L7Ae-box C/D with RNA [[1RLG]], [http://en.wikipedia.org/wiki/Methanococcus_jannaschii Methanococcus jannaschii] L7Ae-H/ACA with RNA [[1RA4]], and [http://en.wikipedia.org/wiki/Pyrococcus Pyrococcus abyssi] L7Ae without RNA [[1PXW]].
+
Solved structures of the proteins include:
 +
*15.5kD in complex with a U4 snRNA fragment, [[1e7k]]
 +
*15.5kD in complex with hPrp31 and a U4 snRNA fragment [[2ozb]]
 +
*Snu13p without RNA - [[1zwz]]
 +
*''[http://en.wikipedia.org/wiki/Archaeoglobus Archaeoglobus fulgidus]'' L7Ae-box C/D with RNA [[1rlg]]
 +
*''[http://en.wikipedia.org/wiki/Methanococcus_jannaschii Methanococcus jannaschii]'' L7Ae-H/ACA with RNA [[1ra4]]
 +
*''[http://en.wikipedia.org/wiki/Pyrococcus Pyrococcus abyssi]'' L7Ae without RNA [[1pxw]].
=Role in pre-ribosomal RNA processing=
=Role in pre-ribosomal RNA processing=
-
[[Ribosomes]] consist of both RNA and protein, and are designated large ribonucleprotein (RNP) particles. Each ribosome contains two subunits (60S and 40S), four ribosomal RNAs (5S, 5.8S, 18S, and 25/28S rRNA), and approximately 75 associated proteins <ref name ="venema">PMID:10690410</ref>. The processing of the pre-rRNAs requires a complex set of posttranscriptional modification steps after [http://en.wikipedia.org/wiki/Transcription_(genetics) transcription] <ref name ="venema"/>. One such step involves extensive processing through pseudouridylation and 2’-O-ribose methylation at sites specified by various [http://en.wikipedia.org/wiki/Small_nucleolar_RNA s(no)RNAs] (C/D box s(no)RNAs specify 2’-O-ribose methylation and H/ACA s(no)RNA specify pseudouridylation) and associated proteins to form s(no)RNPs <ref name ="venema"/><ref name ="m-g">PMID:12810916</ref>. Specifically, the 5’ region of U3 s(no)RNA containing C’/D and B/C box pairs interacts with 5’-ETS and 17S/18S areas of the pre-rRNA<ref name ="m-g"/>. U3 also binds a set of proteins to form the U3 s(no)RNP complex <ref name ="gagnon"/>.
+
[[Ribosome|Ribosomes]] consist of both RNA and protein, and are designated large ribonucleprotein (RNP) particles. Each ribosome contains two subunits (60S and 40S), four ribosomal RNAs (5S, 5.8S, 18S, and 25/28S rRNA), and approximately 75 associated proteins <ref name ="venema">PMID:10690410</ref>. The processing of the pre-rRNAs requires a complex set of posttranscriptional modification steps after [http://en.wikipedia.org/wiki/Transcription_(genetics) transcription] <ref name ="venema"/>. One such step involves extensive processing through pseudouridylation and 2’-O-ribose methylation at sites specified by various [http://en.wikipedia.org/wiki/Small_nucleolar_RNA s(no)RNAs] (C/D box s(no)RNAs specify 2’-O-ribose methylation and H/ACA s(no)RNA specify pseudouridylation) and associated proteins to form s(no)RNPs <ref name ="venema"/><ref name ="m-g">PMID:12810916</ref>. Specifically, the 5’ region of U3 s(no)RNA containing C’/D and B/C box pairs interacts with 5’-ETS and 17S/18S areas of the pre-rRNA<ref name ="m-g"/>. U3 also binds a set of proteins to form the U3 s(no)RNP complex <ref name ="gagnon"/>.
Snu13p/15.5kD/L7Ae interacts with U3 s(no)RNA through a kink-turn RNA motif <ref name ="venema"/>. The protein initiates box C/D assembly by binding the kink-turn of the C/D RNAs <ref name ="gagnon"/>. Once the s(no)RNP is fully assembled the RNA regions bind to complementary regions in target pre-rRNA. This is followed by catalysis of the methyl transferase reaction by the associated proteins <ref name ="gagnon"/>.
Snu13p/15.5kD/L7Ae interacts with U3 s(no)RNA through a kink-turn RNA motif <ref name ="venema"/>. The protein initiates box C/D assembly by binding the kink-turn of the C/D RNAs <ref name ="gagnon"/>. Once the s(no)RNP is fully assembled the RNA regions bind to complementary regions in target pre-rRNA. This is followed by catalysis of the methyl transferase reaction by the associated proteins <ref name ="gagnon"/>.

Current revision

Structure of 15.5kD bound with a U4 snRNP fragment (1e7k)

Drag the structure with the mouse to rotate

See Also


References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 PMCID:PMC2802039
  2. 2.0 2.1 2.2 Dobbyn HC, McEwan PA, Krause A, Novak-Frazer L, Bella J, O'Keefe RT. Analysis of pre-mRNA and pre-rRNA processing factor Snu13p structure and mutants. Biochem Biophys Res Commun. 2007 Sep 7;360(4):857-62. Epub 2007 Jul 9. PMID:17631273 doi:10.1016/j.bbrc.2007.06.163
  3. 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 Oruganti S, Zhang Y, Li H. Structural comparison of yeast snoRNP and spliceosomal protein Snu13p with its homologs. Biochem Biophys Res Commun. 2005 Jul 29;333(2):550-4. PMID:15963469 doi:10.1016/j.bbrc.2005.05.141
  4. 4.0 4.1 4.2 4.3 Venema J, Tollervey D. Ribosome synthesis in Saccharomyces cerevisiae. Annu Rev Genet. 1999;33:261-311. PMID:10690410 doi:10.1146/annurev.genet.33.1.261
  5. 5.0 5.1 5.2 5.3 5.4 Marmier-Gourrier N, Clery A, Senty-Segault V, Charpentier B, Schlotter F, Leclerc F, Fournier R, Branlant C. A structural, phylogenetic, and functional study of 15.5-kD/Snu13 protein binding on U3 small nucleolar RNA. RNA. 2003 Jul;9(7):821-38. PMID:12810916
  6. 6.0 6.1 6.2 6.3 6.4 6.5 van der Feltz C, Anthony K, Brilot A, Pomeranz Krummel DA. Architecture of the Spliceosome. Biochemistry. 2012 Apr 10. PMID:22471593 doi:10.1021/bi201215r
  7. 7.0 7.1 7.2 7.3 7.4 7.5 Sperling J, Azubel M, Sperling R. Structure and function of the Pre-mRNA splicing machine. Structure. 2008 Nov 12;16(11):1605-15. PMID:19000813 doi:10.1016/j.str.2008.08.011
  8. Zhang L, Xu T, Maeder C, Bud LO, Shanks J, Nix J, Guthrie C, Pleiss JA, Zhao R. Structural evidence for consecutive Hel308-like modules in the spliceosomal ATPase Brr2. Nat Struct Mol Biol. 2009 Jul;16(7):731-9. Epub 2009 Jun 14. PMID:19525970 doi:10.1038/nsmb.1625
  9. Zhang L, Xu T, Maeder C, Bud LO, Shanks J, Nix J, Guthrie C, Pleiss JA, Zhao R. Structural evidence for consecutive Hel308-like modules in the spliceosomal ATPase Brr2. Nat Struct Mol Biol. 2009 Jul;16(7):731-9. Epub 2009 Jun 14. PMID:19525970 doi:10.1038/nsmb.1625
  10. 10.00 10.01 10.02 10.03 10.04 10.05 10.06 10.07 10.08 10.09 10.10 10.11 Vidovic I, Nottrott S, Hartmuth K, Luhrmann R, Ficner R. Crystal structure of the spliceosomal 15.5kD protein bound to a U4 snRNA fragment. Mol Cell. 2000 Dec;6(6):1331-42. PMID:11163207
  11. Chen YW, Bycroft M, Wong KB. Crystal structure of ribosomal protein L30e from the extreme thermophile Thermococcus celer: thermal stability and RNA binding. Biochemistry. 2003 Mar 18;42(10):2857-65. PMID:12627951 doi:10.1021/bi027131s
  12. Wong KB, Lee CF, Chan SH, Leung TY, Chen YW, Bycroft M. Solution structure and thermal stability of ribosomal protein L30e from hyperthermophilic archaeon Thermococcus celer. Protein Sci. 2003 Jul;12(7):1483-95. PMID:12824494 doi:10.1110/ps.0302303
  13. Gagnon MG, Steinberg SV. The adenosine wedge: a new structural motif in ribosomal RNA. RNA. 2010 Feb;16(2):375-81. Epub 2009 Dec 28. PMID:20038632 doi:10.1261/rna.1550310
  14. Steinberg SV, Boutorine YI. G-ribo: a new structural motif in ribosomal RNA. RNA. 2007 Apr;13(4):549-54. Epub 2007 Feb 5. PMID:17283211 doi:10.1261/rna.387107
  15. Lee JC, Cannone JJ, Gutell RR. The lonepair triloop: a new motif in RNA structure. J Mol Biol. 2003 Jan 3;325(1):65-83. PMID:12473452
  16. Tamura M, Holbrook SR. Sequence and structural conservation in RNA ribose zippers. J Mol Biol. 2002 Jul 12;320(3):455-74. PMID:12096903

Additional External Resources

Proteopedia Page Contributors and Editors (what is this?)

Wayne Decatur, Kelly Hrywkiw, Alexander Berchansky

Personal tools