15.5kD/Snu13/L7Ae protein
From Proteopedia
(Difference between revisions)
m |
m |
||
Line 10: | Line 10: | ||
A variation of the [[Kink-turn motif|kink-turn motif]], known as the kink-loop motif, can be found in the C/D and H/ACA RNAs <ref name ="gagnon"/>. Interestingly, the eukaryotic proteins and their archaeal homologue do not interact with the different motifs in the same manner, even though share a conserved sequence similarity <ref name ="oruganti"/>. For example, while L7Ae exhibits the same binding affinity for both the [[Kink-turn motif|kink-turn]] and kink-loop sRNA motifs, its eukaryotic homologues only bind specifically to the [[Kink-turn motif|kink-turn motif]] and discriminate against the kink-loop motif <ref name ="oruganti"/><ref name ="gagnon"/>. | A variation of the [[Kink-turn motif|kink-turn motif]], known as the kink-loop motif, can be found in the C/D and H/ACA RNAs <ref name ="gagnon"/>. Interestingly, the eukaryotic proteins and their archaeal homologue do not interact with the different motifs in the same manner, even though share a conserved sequence similarity <ref name ="oruganti"/>. For example, while L7Ae exhibits the same binding affinity for both the [[Kink-turn motif|kink-turn]] and kink-loop sRNA motifs, its eukaryotic homologues only bind specifically to the [[Kink-turn motif|kink-turn motif]] and discriminate against the kink-loop motif <ref name ="oruganti"/><ref name ="gagnon"/>. | ||
- | Solved structures of the proteins include: 15.5kD in complex with a U4 snRNA fragment [[ | + | Solved structures of the proteins include: |
+ | *15.5kD in complex with a U4 snRNA fragment, [[1e7k]] | ||
+ | *15.5kD in complex with hPrp31 and a U4 snRNA fragment [[2ozb]] | ||
+ | *Snu13p without RNA - [[1zwz]] | ||
+ | *''[http://en.wikipedia.org/wiki/Archaeoglobus Archaeoglobus fulgidus]'' L7Ae-box C/D with RNA [[1rlg]] | ||
+ | *''[http://en.wikipedia.org/wiki/Methanococcus_jannaschii Methanococcus jannaschii]'' L7Ae-H/ACA with RNA [[1ra4]] | ||
+ | *''[http://en.wikipedia.org/wiki/Pyrococcus Pyrococcus abyssi]'' L7Ae without RNA [[1pxw]]. | ||
=Role in pre-ribosomal RNA processing= | =Role in pre-ribosomal RNA processing= | ||
- | [[Ribosomes]] consist of both RNA and protein, and are designated large ribonucleprotein (RNP) particles. Each ribosome contains two subunits (60S and 40S), four ribosomal RNAs (5S, 5.8S, 18S, and 25/28S rRNA), and approximately 75 associated proteins <ref name ="venema">PMID:10690410</ref>. The processing of the pre-rRNAs requires a complex set of posttranscriptional modification steps after [http://en.wikipedia.org/wiki/Transcription_(genetics) transcription] <ref name ="venema"/>. One such step involves extensive processing through pseudouridylation and 2’-O-ribose methylation at sites specified by various [http://en.wikipedia.org/wiki/Small_nucleolar_RNA s(no)RNAs] (C/D box s(no)RNAs specify 2’-O-ribose methylation and H/ACA s(no)RNA specify pseudouridylation) and associated proteins to form s(no)RNPs <ref name ="venema"/><ref name ="m-g">PMID:12810916</ref>. Specifically, the 5’ region of U3 s(no)RNA containing C’/D and B/C box pairs interacts with 5’-ETS and 17S/18S areas of the pre-rRNA<ref name ="m-g"/>. U3 also binds a set of proteins to form the U3 s(no)RNP complex <ref name ="gagnon"/>. | + | [[Ribosome|Ribosomes]] consist of both RNA and protein, and are designated large ribonucleprotein (RNP) particles. Each ribosome contains two subunits (60S and 40S), four ribosomal RNAs (5S, 5.8S, 18S, and 25/28S rRNA), and approximately 75 associated proteins <ref name ="venema">PMID:10690410</ref>. The processing of the pre-rRNAs requires a complex set of posttranscriptional modification steps after [http://en.wikipedia.org/wiki/Transcription_(genetics) transcription] <ref name ="venema"/>. One such step involves extensive processing through pseudouridylation and 2’-O-ribose methylation at sites specified by various [http://en.wikipedia.org/wiki/Small_nucleolar_RNA s(no)RNAs] (C/D box s(no)RNAs specify 2’-O-ribose methylation and H/ACA s(no)RNA specify pseudouridylation) and associated proteins to form s(no)RNPs <ref name ="venema"/><ref name ="m-g">PMID:12810916</ref>. Specifically, the 5’ region of U3 s(no)RNA containing C’/D and B/C box pairs interacts with 5’-ETS and 17S/18S areas of the pre-rRNA<ref name ="m-g"/>. U3 also binds a set of proteins to form the U3 s(no)RNP complex <ref name ="gagnon"/>. |
Snu13p/15.5kD/L7Ae interacts with U3 s(no)RNA through a kink-turn RNA motif <ref name ="venema"/>. The protein initiates box C/D assembly by binding the kink-turn of the C/D RNAs <ref name ="gagnon"/>. Once the s(no)RNP is fully assembled the RNA regions bind to complementary regions in target pre-rRNA. This is followed by catalysis of the methyl transferase reaction by the associated proteins <ref name ="gagnon"/>. | Snu13p/15.5kD/L7Ae interacts with U3 s(no)RNA through a kink-turn RNA motif <ref name ="venema"/>. The protein initiates box C/D assembly by binding the kink-turn of the C/D RNAs <ref name ="gagnon"/>. Once the s(no)RNP is fully assembled the RNA regions bind to complementary regions in target pre-rRNA. This is followed by catalysis of the methyl transferase reaction by the associated proteins <ref name ="gagnon"/>. |
Current revision
|
See Also
- Kink-turn motif
- RNA motifs
- Ribosome
- The Large Ribosomal Subunit
- Ribozyme
- Group I intron
- Azoarcus group I intron
- 1go1, 1go0, 1w3e and 1h7m – the Thermococcus celer ribosomal protein L30[11][12]
- A-minor motif
- The adenosine wedge motif[13]
- The G-ribo motif[14]
- The lonepair triloop motif[15]
- RNA ribose zipper[16]
References
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 PMCID:PMC2802039
- ↑ 2.0 2.1 2.2 Dobbyn HC, McEwan PA, Krause A, Novak-Frazer L, Bella J, O'Keefe RT. Analysis of pre-mRNA and pre-rRNA processing factor Snu13p structure and mutants. Biochem Biophys Res Commun. 2007 Sep 7;360(4):857-62. Epub 2007 Jul 9. PMID:17631273 doi:10.1016/j.bbrc.2007.06.163
- ↑ 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 Oruganti S, Zhang Y, Li H. Structural comparison of yeast snoRNP and spliceosomal protein Snu13p with its homologs. Biochem Biophys Res Commun. 2005 Jul 29;333(2):550-4. PMID:15963469 doi:10.1016/j.bbrc.2005.05.141
- ↑ 4.0 4.1 4.2 4.3 Venema J, Tollervey D. Ribosome synthesis in Saccharomyces cerevisiae. Annu Rev Genet. 1999;33:261-311. PMID:10690410 doi:10.1146/annurev.genet.33.1.261
- ↑ 5.0 5.1 5.2 5.3 5.4 Marmier-Gourrier N, Clery A, Senty-Segault V, Charpentier B, Schlotter F, Leclerc F, Fournier R, Branlant C. A structural, phylogenetic, and functional study of 15.5-kD/Snu13 protein binding on U3 small nucleolar RNA. RNA. 2003 Jul;9(7):821-38. PMID:12810916
- ↑ 6.0 6.1 6.2 6.3 6.4 6.5 van der Feltz C, Anthony K, Brilot A, Pomeranz Krummel DA. Architecture of the Spliceosome. Biochemistry. 2012 Apr 10. PMID:22471593 doi:10.1021/bi201215r
- ↑ 7.0 7.1 7.2 7.3 7.4 7.5 Sperling J, Azubel M, Sperling R. Structure and function of the Pre-mRNA splicing machine. Structure. 2008 Nov 12;16(11):1605-15. PMID:19000813 doi:10.1016/j.str.2008.08.011
- ↑ Zhang L, Xu T, Maeder C, Bud LO, Shanks J, Nix J, Guthrie C, Pleiss JA, Zhao R. Structural evidence for consecutive Hel308-like modules in the spliceosomal ATPase Brr2. Nat Struct Mol Biol. 2009 Jul;16(7):731-9. Epub 2009 Jun 14. PMID:19525970 doi:10.1038/nsmb.1625
- ↑ Zhang L, Xu T, Maeder C, Bud LO, Shanks J, Nix J, Guthrie C, Pleiss JA, Zhao R. Structural evidence for consecutive Hel308-like modules in the spliceosomal ATPase Brr2. Nat Struct Mol Biol. 2009 Jul;16(7):731-9. Epub 2009 Jun 14. PMID:19525970 doi:10.1038/nsmb.1625
- ↑ 10.00 10.01 10.02 10.03 10.04 10.05 10.06 10.07 10.08 10.09 10.10 10.11 Vidovic I, Nottrott S, Hartmuth K, Luhrmann R, Ficner R. Crystal structure of the spliceosomal 15.5kD protein bound to a U4 snRNA fragment. Mol Cell. 2000 Dec;6(6):1331-42. PMID:11163207
- ↑ Chen YW, Bycroft M, Wong KB. Crystal structure of ribosomal protein L30e from the extreme thermophile Thermococcus celer: thermal stability and RNA binding. Biochemistry. 2003 Mar 18;42(10):2857-65. PMID:12627951 doi:10.1021/bi027131s
- ↑ Wong KB, Lee CF, Chan SH, Leung TY, Chen YW, Bycroft M. Solution structure and thermal stability of ribosomal protein L30e from hyperthermophilic archaeon Thermococcus celer. Protein Sci. 2003 Jul;12(7):1483-95. PMID:12824494 doi:10.1110/ps.0302303
- ↑ Gagnon MG, Steinberg SV. The adenosine wedge: a new structural motif in ribosomal RNA. RNA. 2010 Feb;16(2):375-81. Epub 2009 Dec 28. PMID:20038632 doi:10.1261/rna.1550310
- ↑ Steinberg SV, Boutorine YI. G-ribo: a new structural motif in ribosomal RNA. RNA. 2007 Apr;13(4):549-54. Epub 2007 Feb 5. PMID:17283211 doi:10.1261/rna.387107
- ↑ Lee JC, Cannone JJ, Gutell RR. The lonepair triloop: a new motif in RNA structure. J Mol Biol. 2003 Jan 3;325(1):65-83. PMID:12473452
- ↑ Tamura M, Holbrook SR. Sequence and structural conservation in RNA ribose zippers. J Mol Biol. 2002 Jul 12;320(3):455-74. PMID:12096903
Additional External Resources
- CRYSTAL STRUCTURE OF THE SPLICEOSOMAL 15.5KD PROTEIN BOUND TO A U4 snRNA FRAGMENT, in the RCSB Protein Data Bank
- Structure of a human Prp31-15.5K-U4 snRNA complex, in the RCSB Protein Data Bank
- Structural comparison of Yeast snoRNP and splicesomal protein snu13p with its homologs, in the RCSB Protein Data Bank
- Molecular basis of Box C/D RNA-protein interaction: co-crystal structure of the Archaeal sRNP intiation complex, in the RCSB Protein Data Bank
- Crystal structure of L7Ae sRNP core protein from Pyrococcus abyssii, in the RCSB Protein Data Bank