Ku protein

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
('''Structure of the Ku heterodimer bound to DNA''')
('''Structure of the Ku heterodimer bound to DNA''')
Line 10: Line 10:
<scene name='56/567269/Ku_ring/1'>Ku Ring</scene>
<scene name='56/567269/Ku_ring/1'>Ku Ring</scene>
-
The <scene name='56/567269/Ku_ring/1'>Ku Ring</scene> is composed of a broad base of beta barrels that cradle the DNA, and a narrow bridge that serves to protect the double strand break from base pairing with other DNA base pairs and degradation <ref> PMID: 11493912</ref>. There is little interaction between the ring and the backbone or base pairs of DNA; instead, the ring associates with DNA by the cradle fitting into the major grooves of the helix <ref> PMID: 11493912</ref>. The positive electrostatic charge caused by polarization of the ring also allows the negatively charged backbone of DNA to be guided into the correct position <ref> PMID: 11493912</ref>. The Ku protein also has a high affinity to DNA due to its form being preset for the helix. As a result of the asymmetric ring, there is a strong preference (Kd value of 1.5 to 4 X 10^-10 M<ref> PMID: 11493912</ref>) for the <scene name='56/567269/Ku_ring/1'>Ku Ring</scene> to slide onto the ends of DNA <ref> PMID: 11493912</ref>. In addition, other asymmetric features, such as a abundance of Asp residues on the N terminus of the <scene name='56/567269/Ku_heterodimer/3'>Ku heterodimer</scene> (NEED SCENE OF ASP ON N-TERMINUS OR MAYBE JUST ASP IN GENERAL), prevent the Ku protein from sliding further on the DNA helix. While wrapping over the entire helix, the <scene name='56/567269/Ku_ring/1'>Ku Ring</scene> is thin over the bridge, allowing ligases and polymerases to efficiently interact in [[non-homologous end joining (NHEJ)]]. <ref> PMID: 11493912</ref>
+
The <scene name='56/567269/Ku_ring/1'>Ku Ring</scene> is composed of a broad base of beta barrels that cradle the DNA, and a narrow bridge that serves to protect the double strand break from base pairing with other DNA base pairs and degradation <ref> PMID: 11493912</ref>. There is little interaction between the ring and the backbone or base pairs of DNA; instead, the ring associates with DNA by the cradle fitting into the major grooves of the helix <ref> PMID: 11493912</ref>. The positive electrostatic charge caused by polarization of the ring also allows the negatively charged backbone of DNA to be guided into the correct position <ref> PMID: 11493912</ref> (NEED SCENE OF POS CHARGE OR POLARIZATION). The Ku protein also has a high affinity to DNA due to its form being preset for the helix. As a result of the asymmetric ring, there is a strong preference (Kd value of 1.5 to 4 X 10^-10 M<ref> PMID: 11493912</ref>) for the <scene name='56/567269/Ku_ring/1'>Ku Ring</scene> to slide onto the ends of DNA <ref> PMID: 11493912</ref>. In addition, other asymmetric features, such as a abundance of Asp residues on the N terminus of the <scene name='56/567269/Ku_heterodimer/3'>Ku heterodimer</scene> (NEED SCENE OF ASP ON N-TERMINUS OR MAYBE JUST ASP IN GENERAL), prevent the Ku protein from sliding further on the DNA helix. While wrapping over the entire helix, the <scene name='56/567269/Ku_ring/1'>Ku Ring</scene> is thin over the bridge, allowing ligases and polymerases to efficiently interact in [[non-homologous end joining (NHEJ)]]. <ref> PMID: 11493912</ref>
== Domains ==
== Domains ==
<scene name='56/567269/Ku70_subunit/3'>Ku70/80 subunits</scene>
<scene name='56/567269/Ku70_subunit/3'>Ku70/80 subunits</scene>

Revision as of 22:21, 3 November 2013

Structure of the Ku heterodimer bound to DNA

Structure of the Ku heterodimer bound to DNA (PDB entry 1JEY)

Drag the structure with the mouse to rotate

References

  1. Walker JR, Corpina RA, Goldberg J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature. 2001 Aug 9;412(6847):607-14. PMID:11493912 doi:10.1038/35088000
  2. Walker JR, Corpina RA, Goldberg J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature. 2001 Aug 9;412(6847):607-14. PMID:11493912 doi:10.1038/35088000
  3. Walker JR, Corpina RA, Goldberg J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature. 2001 Aug 9;412(6847):607-14. PMID:11493912 doi:10.1038/35088000
  4. Walker JR, Corpina RA, Goldberg J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature. 2001 Aug 9;412(6847):607-14. PMID:11493912 doi:10.1038/35088000
  5. Walker JR, Corpina RA, Goldberg J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature. 2001 Aug 9;412(6847):607-14. PMID:11493912 doi:10.1038/35088000
  6. Walker JR, Corpina RA, Goldberg J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature. 2001 Aug 9;412(6847):607-14. PMID:11493912 doi:10.1038/35088000
  7. Walker JR, Corpina RA, Goldberg J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature. 2001 Aug 9;412(6847):607-14. PMID:11493912 doi:10.1038/35088000
  8. Walker JR, Corpina RA, Goldberg J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature. 2001 Aug 9;412(6847):607-14. PMID:11493912 doi:10.1038/35088000
  9. Walker JR, Corpina RA, Goldberg J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature. 2001 Aug 9;412(6847):607-14. PMID:11493912 doi:10.1038/35088000
  10. Walker JR, Corpina RA, Goldberg J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature. 2001 Aug 9;412(6847):607-14. PMID:11493912 doi:10.1038/35088000
  11. Walker JR, Corpina RA, Goldberg J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature. 2001 Aug 9;412(6847):607-14. PMID:11493912 doi:10.1038/35088000
  12. Walker JR, Corpina RA, Goldberg J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature. 2001 Aug 9;412(6847):607-14. PMID:11493912 doi:10.1038/35088000
  13. Walker JR, Corpina RA, Goldberg J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature. 2001 Aug 9;412(6847):607-14. PMID:11493912 doi:10.1038/35088000
  14. Walker JR, Corpina RA, Goldberg J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature. 2001 Aug 9;412(6847):607-14. PMID:11493912 doi:10.1038/35088000
  15. Walker JR, Corpina RA, Goldberg J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature. 2001 Aug 9;412(6847):607-14. PMID:11493912 doi:10.1038/35088000

Proteopedia Page Contributors and Editors (what is this?)

Peter A. Duden, Terry Nowell, Michal Harel, Jaime Prilusky

Personal tools