Extremophile

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 12: Line 12:
It comes down to <scene name='55/557585/Align_test/18'>eight divergent amino acids (elephant's amino acids in yellow halos)</scene>. Without these amino acids, myoglobin in both whale and elephants has a charge of ''+1''. With them, whale myoglobin has a net charge of ''+4'' and elephants of ''+2''. Importantly, all eight of these divergent amino acids are <scene name='52/523344/Elephantwhale/29'>surface residues</scene>.
It comes down to <scene name='55/557585/Align_test/18'>eight divergent amino acids (elephant's amino acids in yellow halos)</scene>. Without these amino acids, myoglobin in both whale and elephants has a charge of ''+1''. With them, whale myoglobin has a net charge of ''+4'' and elephants of ''+2''. Importantly, all eight of these divergent amino acids are <scene name='52/523344/Elephantwhale/29'>surface residues</scene>.
-
Calculate along the chain, in the N to C-terminal direction how just several amino acid switches bring the positive net charge of whale myoglobin up to ''+4'' and elephants to ''+2'': (summing up the total charge of the protein) <scene name='52/523344/Elephantwhale/19'>residue position 8</scene> (glu in elephents versus gln in whales), <scene name='52/523344/Elephantwhale/21'>12</scene> (lys vs. his), <scene name='52/523344/Elephantwhale/22'>27</scene> (thr vs. asp), <scene name='52/523344/Elephantwhale/23'>34</scene> (thr vs. lys), <scene name='52/523344/Elephantwhale/24'>87</scene> (gln vs. lys), <scene name='52/523344/Elephantwhale/26'>116</scene> (gln vs. his), <scene name='52/523344/Elephantwhale/27'>132</scene> (lys vs. asn), <scene name='52/523344/Elephantwhale/28'>140</scene> (asn vs. lys).
+
Calculate along the chain, in the N to C-terminal direction how just several amino acid switches bring the positive net charge of whale myoglobin up to ''+4'' and elephants to ''+2'': (summing up the total charge of the protein) <scene name='52/523344/Elephantwhale/19'>residue position 8</scene> (<span style="color:red">'''glu'''</span> in elephents versus gln in whales), <scene name='52/523344/Elephantwhale/21'>12</scene> (<span style="color:blue">'''lys'''</span> vs. <span style="color:lightblue">'''his'''</span>), <scene name='52/523344/Elephantwhale/22'>27</scene> (thr vs. <span style="color:red">'''asp'''</span>), <scene name='52/523344/Elephantwhale/23'>34</scene> (thr vs. <span style="color:blue">'''lys'''</span> ), <scene name='52/523344/Elephantwhale/24'>87</scene> (gln vs. <span style="color:blue">'''lys'''</span> ), <scene name='52/523344/Elephantwhale/26'>116</scene> (gln vs. <span style="color:lightblue">'''his'''</span>), <scene name='52/523344/Elephantwhale/27'>132</scene> (<span style="color:blue">'''lys'''</span> vs. asn), <scene name='52/523344/Elephantwhale/28'>140</scene> (asn vs. <span style="color:blue">'''lys'''</span> ).
*''note about illustration'': <span style="color:red">'''Asp and Glu'''</span> have a charge of ''-1'', <span style="color:blue">'''Arg and Lys'''</span> have a charge of ''+1'', <span style="color:lightblue">'''His'''</span> in the positions shown here - ''12'' and ''116'' (Table S2<ref name="whaleMyo" />) - have a charge of about ''+0.5''.
*''note about illustration'': <span style="color:red">'''Asp and Glu'''</span> have a charge of ''-1'', <span style="color:blue">'''Arg and Lys'''</span> have a charge of ''+1'', <span style="color:lightblue">'''His'''</span> in the positions shown here - ''12'' and ''116'' (Table S2<ref name="whaleMyo" />) - have a charge of about ''+0.5''.

Revision as of 10:18, 18 December 2013

myoglobin - how the chain cradles the heme (PDB entry 1mbn)

Drag the structure with the mouse to rotate
  1. 1.0 1.1 Mirceta S, Signore AV, Burns JM, Cossins AR, Campbell KL, Berenbrink M. Evolution of mammalian diving capacity traced by myoglobin net surface charge. Science. 2013 Jun 14;340(6138):1234192. doi: 10.1126/science.1234192. PMID:23766330 doi:http://dx.doi.org/10.1126/science.1234192
  2. Goh CS, Lan N, Douglas SM, Wu B, Echols N, Smith A, Milburn D, Montelione GT, Zhao H, Gerstein M. Mining the structural genomics pipeline: identification of protein properties that affect high-throughput experimental analysis. J Mol Biol. 2004 Feb 6;336(1):115-30. PMID:14741208 doi:http://dx.doi.org/10.1016/S0022283603014748
  3. Brocchieri L. Environmental signatures in proteome properties. Proc Natl Acad Sci U S A. 2004 Jun 1;101(22):8257-8. Epub 2004 May 24. PMID:15159533 doi:http://dx.doi.org/10.1073/pnas.0402797101
Personal tools