Sandbox Reserved 919

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 7: Line 7:
==Introduction==
==Introduction==
[[Image:MGLProt.jpg|300 px|right|thumb|Monomer of MGL created in PYMOL (PDB:3PE6)]]
[[Image:MGLProt.jpg|300 px|right|thumb|Monomer of MGL created in PYMOL (PDB:3PE6)]]
-
'''Monoglyceride Lipase''' ('''MGL''', '''MAGL''', '''MGLL''') is a 33 kDa [http://en.wikipedia.org/wiki/Protein protein] found mostly in the cell membrane. It is a [http://en.wikipedia.org/wiki/Serine_hydrolase serine hydrolase] enzyme that exhibits an [http://en.wikipedia.org/wiki/Alpha/beta_hydrolase_fold α/β hydrolase fold]. In addition, MGL possesses amphitropic character, where the area around the active site of MGL is polar while the site itself is non-polar. This characteristic allows the protein to be present both in the membrane and in the cytosol. MGL plays a key role in the hydrolysis of 2-arachidonoylglycerol (2-AG), an endocannabinoid produced by the the central nervous system. The α/β fold allows 2-AG to selectively bind to the active site and be broken down into arachidonic acid and glycerol. Upon breakdown, glycerol leaves via an "exit tunnel" found perpendicular to the α/β fold. 2-AG itself has been found to possess anti-nociceptive, immunomodulatory, anti-inflammatory and tumor-reductive character when it binds to cannabinoid receptors. Due to the vast medical and therapeutic utility of 2-AG, the inhibition of MGL is a high interest target in pharmaceutical research. <ref name="bert"> PMID:19962385 </ref>
+
'''Monoglyceride Lipase''' ('''MGL''', '''MAGL''', '''MGLL''') is a 33 kDa [http://en.wikipedia.org/wiki/Protein protein] found mostly in the cell membrane. It is a [http://en.wikipedia.org/wiki/Serine_hydrolase serine hydrolase] enzyme that exhibits an [http://en.wikipedia.org/wiki/Alpha/beta_hydrolase_fold α/β hydrolase fold]. MGL possesses an amphipathic character, that allows the protein to be present both in the membrane and in the cytosol. MGL plays a key role in the hydrolysis of 2-arachidonoylglycerol (2-AG), an endocannabinoid produced by the the central nervous system. The α/β fold, along with a characteristic amphipathic occluded tunnel, allows 2-AG to selectively bind to the active site and be broken down into arachidonic acid and glycerol. Upon breakdown, glycerol leaves via an "exit tunnel" found perpendicular to the active site. 2-AG itself has been found to possess anti-nociceptive, immunomodulatory, anti-inflammatory and tumor-reductive character when it binds to cannabinoid receptors. Due to the vast medical and therapeutic utility of 2-AG, the inhibition of MGL is a high interest target in pharmaceutical research. <ref name="bert"> PMID:19962385 </ref>
----
----

Revision as of 19:20, 3 April 2014

This Sandbox is Reserved from Jan 06, 2014, through Aug 22, 2014 for use by the Biochemistry II class at the Butler University at Indianapolis, IN USA taught by R. Jeremy Johnson. This reservation includes Sandbox Reserved 911 through Sandbox Reserved 922.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • Click the 3D button (when editing, above the wikitext box) to insert a 3D applet Jmol scene window.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

Monoglyceride Lipase

Introduction

Image:MGLProt.jpg
Monomer of MGL created in PYMOL (PDB:3PE6)

Monoglyceride Lipase (MGL, MAGL, MGLL) is a 33 kDa protein found mostly in the cell membrane. It is a serine hydrolase enzyme that exhibits an α/β hydrolase fold. MGL possesses an amphipathic character, that allows the protein to be present both in the membrane and in the cytosol. MGL plays a key role in the hydrolysis of 2-arachidonoylglycerol (2-AG), an endocannabinoid produced by the the central nervous system. The α/β fold, along with a characteristic amphipathic occluded tunnel, allows 2-AG to selectively bind to the active site and be broken down into arachidonic acid and glycerol. Upon breakdown, glycerol leaves via an "exit tunnel" found perpendicular to the active site. 2-AG itself has been found to possess anti-nociceptive, immunomodulatory, anti-inflammatory and tumor-reductive character when it binds to cannabinoid receptors. Due to the vast medical and therapeutic utility of 2-AG, the inhibition of MGL is a high interest target in pharmaceutical research. [1]


Structure

Drag the structure with the mouse to rotate

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 Bertrand T, Auge F, Houtmann J, Rak A, Vallee F, Mikol V, Berne PF, Michot N, Cheuret D, Hoornaert C, Mathieu M. Structural basis for human monoglyceride lipase inhibition. J Mol Biol. 2010 Feb 26;396(3):663-73. Epub 2009 Dec 3. PMID:19962385 doi:10.1016/j.jmb.2009.11.060
  2. 2.0 2.1 Schalk-Hihi C, Schubert C, Alexander R, Bayoumy S, Clemente JC, Deckman I, Desjarlais RL, Dzordzorme KC, Flores CM, Grasberger B, Kranz JK, Lewandowski F, Liu L, Ma H, Maguire D, Macielag MJ, McDonnell ME, Haarlander TM, Miller R, Milligan C, Reynolds C, Kuo LC. Crystal structure of a soluble form of human monoglyceride lipase in complex with an inhibitor at 1.35 A resolution. Protein Sci. 2011 Feb 3. doi: 10.1002/pro.596. PMID:21308848 doi:10.1002/pro.596
  3. 3.0 3.1 3.2 3.3 Labar G, Bauvois C, Borel F, Ferrer JL, Wouters J, Lambert DM. Crystal structure of the human monoacylglycerol lipase, a key actor in endocannabinoid signaling. Chembiochem. 2010 Jan 25;11(2):218-27. PMID:19957260 doi:10.1002/cbic.200900621
  4. Nomura DK, Lombardi DP, Chang JW, Niessen S, Ward AM, Long JZ, Hoover HH, Cravatt BF. Monoacylglycerol lipase exerts dual control over endocannabinoid and fatty acid pathways to support prostate cancer. Chem Biol. 2011 Jul 29;18(7):846-56. doi: 10.1016/j.chembiol.2011.05.009. PMID:21802006 doi:http://dx.doi.org/10.1016/j.chembiol.2011.05.009
Personal tools