3u5s
From Proteopedia
| Line 1: | Line 1: | ||
| - | [[Image:3u5s.png|left|200px]] | ||
| - | |||
{{STRUCTURE_3u5s| PDB=3u5s | SCENE= }} | {{STRUCTURE_3u5s| PDB=3u5s | SCENE= }} | ||
| - | |||
===Selenium Substituted Human Augmenter of Liver Regeneration=== | ===Selenium Substituted Human Augmenter of Liver Regeneration=== | ||
| - | |||
{{ABSTRACT_PUBMED_23159557}} | {{ABSTRACT_PUBMED_23159557}} | ||
| + | |||
| + | ==Disease== | ||
| + | [[http://www.uniprot.org/uniprot/ALR_HUMAN ALR_HUMAN]] Congenital cataract - progressive muscular hypotonia - hearing loss - developmental delay. The disease is caused by mutations affecting the gene represented in this entry. | ||
| + | |||
| + | ==Function== | ||
| + | [[http://www.uniprot.org/uniprot/ALR_HUMAN ALR_HUMAN]] Isoform 1: FAD-dependent sulfhydryl oxidase that regenerates the redox-active disulfide bonds in CHCHD4/MIA40, a chaperone essential for disulfide bond formation and protein folding in the mitochondrial intermembrane space. The reduced form of CHCHD4/MIA40 forms a transient intermolecular disulfide bridge with GFER/ERV1, resulting in regeneration of the essential disulfide bonds in CHCHD4/MIA40, while GFER/ERV1 becomes re-oxidized by donating electrons to cytochrome c or molecular oxygen.<ref>PMID:19397338</ref> <ref>PMID:23186364</ref> <ref>PMID:20593814</ref> <ref>PMID:21383138</ref> <ref>PMID:22224850</ref> Isoform 2: May act as an autocrine hepatotrophic growth factor promoting liver regeneration.<ref>PMID:19397338</ref> <ref>PMID:23186364</ref> <ref>PMID:20593814</ref> <ref>PMID:21383138</ref> <ref>PMID:22224850</ref> | ||
==About this Structure== | ==About this Structure== | ||
| - | [[3u5s]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/ | + | [[3u5s]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3U5S OCA]. |
| - | [[Category: | + | |
| + | ==See Also== | ||
| + | *[[Sulfhydryl oxidase|Sulfhydryl oxidase]] | ||
| + | |||
| + | ==Reference== | ||
| + | <ref group="xtra">PMID:023159557</ref><references group="xtra"/><references/> | ||
| + | [[Category: Human]] | ||
[[Category: Thiol oxidase]] | [[Category: Thiol oxidase]] | ||
[[Category: Bahnson, B J.]] | [[Category: Bahnson, B J.]] | ||
Revision as of 04:50, 9 April 2014
Contents |
Selenium Substituted Human Augmenter of Liver Regeneration
Template:ABSTRACT PUBMED 23159557
Disease
[ALR_HUMAN] Congenital cataract - progressive muscular hypotonia - hearing loss - developmental delay. The disease is caused by mutations affecting the gene represented in this entry.
Function
[ALR_HUMAN] Isoform 1: FAD-dependent sulfhydryl oxidase that regenerates the redox-active disulfide bonds in CHCHD4/MIA40, a chaperone essential for disulfide bond formation and protein folding in the mitochondrial intermembrane space. The reduced form of CHCHD4/MIA40 forms a transient intermolecular disulfide bridge with GFER/ERV1, resulting in regeneration of the essential disulfide bonds in CHCHD4/MIA40, while GFER/ERV1 becomes re-oxidized by donating electrons to cytochrome c or molecular oxygen.[1] [2] [3] [4] [5] Isoform 2: May act as an autocrine hepatotrophic growth factor promoting liver regeneration.[6] [7] [8] [9] [10]
About this Structure
3u5s is a 1 chain structure with sequence from Human. Full crystallographic information is available from OCA.
See Also
Reference
- Schaefer SA, Dong M, Rubenstein RP, Wilkie WA, Bahnson BJ, Thorpe C, Rozovsky S. (77)Se Enrichment of Proteins Expands the Biological NMR Toolbox. J Mol Biol. 2012 Nov 15. pii: S0022-2836(12)00883-2. doi:, 10.1016/j.jmb.2012.11.011. PMID:23159557 doi:http://dx.doi.org/10.1016/j.jmb.2012.11.011
- ↑ Daithankar VN, Farrell SR, Thorpe C. Augmenter of liver regeneration: substrate specificity of a flavin-dependent oxidoreductase from the mitochondrial intermembrane space. Biochemistry. 2009 Jun 9;48(22):4828-37. doi: 10.1021/bi900347v. PMID:19397338 doi:http://dx.doi.org/10.1021/bi900347v
- ↑ Sztolsztener ME, Brewinska A, Guiard B, Chacinska A. Disulfide bond formation: sulfhydryl oxidase ALR controls mitochondrial biogenesis of human MIA40. Traffic. 2013 Mar;14(3):309-20. doi: 10.1111/tra.12030. Epub 2012 Dec 16. PMID:23186364 doi:http://dx.doi.org/10.1111/tra.12030
- ↑ Daithankar VN, Schaefer SA, Dong M, Bahnson BJ, Thorpe C. Structure of the human sulfhydryl oxidase augmenter of liver regeneration and characterization of a human mutation causing an autosomal recessive myopathy. Biochemistry. 2010 Jul 1. PMID:20593814 doi:10.1021/bi100912m
- ↑ Banci L, Bertini I, Calderone V, Cefaro C, Ciofi-Baffoni S, Gallo A, Kallergi E, Lionaki E, Pozidis C, Tokatlidis K. Molecular recognition and substrate mimicry drive the electron-transfer process between MIA40 and ALR. Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):4811-6. Epub 2011 Mar 7. PMID:21383138 doi:10.1073/pnas.1014542108
- ↑ Banci L, Bertini I, Calderone V, Cefaro C, Ciofi-Baffoni S, Gallo A, Tokatlidis K. An electron-transfer path through an extended disulfide relay system: the case of the redox protein ALR. J Am Chem Soc. 2012 Jan 25;134(3):1442-5. Epub 2012 Jan 6. PMID:22224850 doi:10.1021/ja209881f
- ↑ Daithankar VN, Farrell SR, Thorpe C. Augmenter of liver regeneration: substrate specificity of a flavin-dependent oxidoreductase from the mitochondrial intermembrane space. Biochemistry. 2009 Jun 9;48(22):4828-37. doi: 10.1021/bi900347v. PMID:19397338 doi:http://dx.doi.org/10.1021/bi900347v
- ↑ Sztolsztener ME, Brewinska A, Guiard B, Chacinska A. Disulfide bond formation: sulfhydryl oxidase ALR controls mitochondrial biogenesis of human MIA40. Traffic. 2013 Mar;14(3):309-20. doi: 10.1111/tra.12030. Epub 2012 Dec 16. PMID:23186364 doi:http://dx.doi.org/10.1111/tra.12030
- ↑ Daithankar VN, Schaefer SA, Dong M, Bahnson BJ, Thorpe C. Structure of the human sulfhydryl oxidase augmenter of liver regeneration and characterization of a human mutation causing an autosomal recessive myopathy. Biochemistry. 2010 Jul 1. PMID:20593814 doi:10.1021/bi100912m
- ↑ Banci L, Bertini I, Calderone V, Cefaro C, Ciofi-Baffoni S, Gallo A, Kallergi E, Lionaki E, Pozidis C, Tokatlidis K. Molecular recognition and substrate mimicry drive the electron-transfer process between MIA40 and ALR. Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):4811-6. Epub 2011 Mar 7. PMID:21383138 doi:10.1073/pnas.1014542108
- ↑ Banci L, Bertini I, Calderone V, Cefaro C, Ciofi-Baffoni S, Gallo A, Tokatlidis K. An electron-transfer path through an extended disulfide relay system: the case of the redox protein ALR. J Am Chem Soc. 2012 Jan 25;134(3):1442-5. Epub 2012 Jan 6. PMID:22224850 doi:10.1021/ja209881f
