Sandbox Reserved 919

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 27: Line 27:
==Biological/Medical Relevance==
==Biological/Medical Relevance==
===2-AG Metabolism===
===2-AG Metabolism===
-
2-AG activates the same cannabinoid receptors (CB1 and CB2) for both [http://en.wikipedia.org/wiki/Anandamide anandamide] and the main psychoactive compound found in Cannabis sativa, [http://en.wikipedia.org/wiki/Tetrahydrocannabinol Δ9-Tetrahydrocannabinol] (THC), via [http://en.wikipedia.org/wiki/Retrograde_signaling retrograde signaling]. <ref name="bert" /> 2-AG is the most abundant endocannabinoid found in the brain, possessing analgesic, anti-inflammatory, immunomodulating, neuroprotective, and hypotensive effects.<ref name="labar" /><ref name="nomura" />
+
2-AG activates the same cannabinoid receptors (CB1 and CB2) for both [http://en.wikipedia.org/wiki/Anandamide anandamide] and the main psychoactive compound found in Cannabis sativa, [http://en.wikipedia.org/wiki/Tetrahydrocannabinol Δ9-Tetrahydrocannabinol] (THC), via [http://en.wikipedia.org/wiki/Retrograde_signaling retrograde signaling]. <ref name="bert" /><ref name="labar" /> 2-AG is the most abundant endocannabinoid found in the brain, possessing analgesic, anti-inflammatory, immunomodulating, neuroprotective, and hypotensive effects.<ref name="labar" /><ref name="nomura" />
Approximately 85% of the 2-AG in the rat brain is metabolized by MGL, while other lipases such as [http://en.wikipedia.org/wiki/Fatty_acid_amide_hydrolase fatty acid amide hydrolase] (FAAH) process the remainder of the metabolite.<ref name="blank" /> Based on these studies, MGL has been assigned as the primary enzyme for the metabolism of 2-AG in humans, making it a highly desirable target enzyme for the modulation of 2-AG concentration in the body. <ref name="labar" /><ref name="bert" /><ref name="shalk" /> Although the most-studied role of MGL is the degradation of 2-AG in the brain, MGL may also play a role in adipose tissue, completing the hydrolysis of triglycerides into fatty acids and glycerol, as well as working in the liver to mobilize triglycerides for secretion. <ref name="labar" /><ref name="shalk" />
Approximately 85% of the 2-AG in the rat brain is metabolized by MGL, while other lipases such as [http://en.wikipedia.org/wiki/Fatty_acid_amide_hydrolase fatty acid amide hydrolase] (FAAH) process the remainder of the metabolite.<ref name="blank" /> Based on these studies, MGL has been assigned as the primary enzyme for the metabolism of 2-AG in humans, making it a highly desirable target enzyme for the modulation of 2-AG concentration in the body. <ref name="labar" /><ref name="bert" /><ref name="shalk" /> Although the most-studied role of MGL is the degradation of 2-AG in the brain, MGL may also play a role in adipose tissue, completing the hydrolysis of triglycerides into fatty acids and glycerol, as well as working in the liver to mobilize triglycerides for secretion. <ref name="labar" /><ref name="shalk" />
Line 38: Line 38:
MGL is also a target for continuing cancer research, with the potential to help distinguish the role of fatty acids in [http://en.wikipedia.org/wiki/Malignancy malignancy]. Also of interest is the varying efficacy of endocannabinoids as anti-cancer agents in different body tissues and the multifarious influences on the PI-3k/Akt signaling pathway in [http://en.wikipedia.org/wiki/Carcinogenesis carcinogenesis]. <ref name="hong" />
MGL is also a target for continuing cancer research, with the potential to help distinguish the role of fatty acids in [http://en.wikipedia.org/wiki/Malignancy malignancy]. Also of interest is the varying efficacy of endocannabinoids as anti-cancer agents in different body tissues and the multifarious influences on the PI-3k/Akt signaling pathway in [http://en.wikipedia.org/wiki/Carcinogenesis carcinogenesis]. <ref name="hong" />
-
MGL exerts a twofold influence on cancer growth; endocannabinoids such as 2-AG have been shown to have anti-tumorigenic properties <ref name="labar" /> <ref name="nomura" /> and a high fatty-acid concentration may play a role in the promotion of cancer aggressiveness and malignancy. In aggressive breast, melanoma, ovarian, and prostate cancer cells, MGL activity was found to be higher than in nonaggressive malignant cells. Subsequently, the creation of effective MGL inhibitors may help to treat highly aggressive cancers in addition to their proposed use as analgesics. <ref name="hong" />
+
MGL exerts a twofold influence on cancer growth; endocannabinoids such as 2-AG have been shown to have anti-tumorigenic properties <ref name="labar" /> <ref name="nomura" /> and a high fatty-acid concentration may play a role in the promotion of cancer aggressiveness and malignancy. In aggressive breast, melanoma, ovarian, and prostate cancer cells, MGL activity was found to be higher than in nonaggressive malignant cells.<ref name="nomura" /> Subsequently, the creation of effective MGL inhibitors may help to treat highly aggressive cancers in addition to their proposed use as analgesics.
-
Recent evidence, however, has found that in lung, breast, ovary, stomach, and colorectal cancer, MGL expression was reduced. In addition to controlling 2-AG degradation and fatty acid synthesis pathways, MGL also interacts with key phospholipids (specifically, the 3-phosphorylated phosphoinositide products of PI-3K) in the [http://en.wikipedia.org/wiki/PI3K/AKT/mTOR_pathway PI3K/Akt signaling and tumor growth pathway]. MGL serves as a negative effector in this role: as concentrations of MGL decrease, [http://en.wikipedia.org/wiki/AKT Akt] phosphorylation increase. <ref name= "hong" />
+
Recent evidence, however, has suggested that in lung, breast, ovary, stomach, and colorectal cancer, MGL expression was reduced. In addition to controlling 2-AG degradation and fatty acid synthesis pathways, MGL also interacts with key phospholipids (specifically, the 3-phosphorylated phosphoinositide products of PI-3K) in the [http://en.wikipedia.org/wiki/PI3K/AKT/mTOR_pathway PI3K/Akt signaling and tumor growth pathway]. MGL serves as a negative effector in the pathway: as the concentration of MGL decreases, [http://en.wikipedia.org/wiki/AKT Akt] phosphorylation increases. <ref name= "hong" />
-
MGL’s role in different body tissues is an ongoing area of research in order to elucidate its complex role in cancer pathology. MGL’s effect on exogenous cannabinoid medications given to cancer patients as a palliative medication is a potential and promising lead. <ref name="nomura" />
+
MGL’s role in different body tissues is an ongoing area of research aimed at elucidating its complex role in cancer pathology. MGL’s effect on exogenous cannabinoid medications that are administered to cancer patients as a palliative medication is of particular scientific interes. <ref name="nomura" />
==References==
==References==
{{reflist}}
{{reflist}}

Revision as of 03:37, 24 April 2014

This Sandbox is Reserved from Jan 06, 2014, through Aug 22, 2014 for use by the Biochemistry II class at the Butler University at Indianapolis, IN USA taught by R. Jeremy Johnson. This reservation includes Sandbox Reserved 911 through Sandbox Reserved 922.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • Click the 3D button (when editing, above the wikitext box) to insert a 3D applet Jmol scene window.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

Contents

Monoglyceride Lipase

Image:MGLProt.jpg
Figure 1: Monomer of MGL created in PYMOL (PDB:3PE6), colored by secondary structure.

Introduction

Monoglyceride Lipase (MGL, MAGL, MGLL) is a 33 kDa protein [1] found mostly in the cell membrane . MGL is a serine hydrolase enzyme that contains an α/β hydrolase fold. MGL plays a key role in the hydrolysis of 2-arachidonoylglycerol (2-AG), an endocannabinoid produced by the the central nervous system.[1][2][3][4] The hydrolase fold, along with a characteristic amphipathic occluded tunnel, allows 2-AG to selectively bind to the active site of MGL and be degraded into arachidonic acid and glycerol. 2-AG has been found to possess anti-nociceptive, immunomodulatory, anti-inflammatory and tumor-reductive character when it binds to cannabinoid receptors. [1] [2] Due to the vast medical and therapeutic utility of 2-AG, the inhibition of MGL is a high interest target in pharmaceutical research. Furthermore, MGL has also been cited as having both negative and positive effector roles in cancer pathology. [5] [6]


Structure

Structure

Drag the structure with the mouse to rotate

Cancer Research

MGL is also a target for continuing cancer research, with the potential to help distinguish the role of fatty acids in malignancy. Also of interest is the varying efficacy of endocannabinoids as anti-cancer agents in different body tissues and the multifarious influences on the PI-3k/Akt signaling pathway in carcinogenesis. [6]

MGL exerts a twofold influence on cancer growth; endocannabinoids such as 2-AG have been shown to have anti-tumorigenic properties [1] [5] and a high fatty-acid concentration may play a role in the promotion of cancer aggressiveness and malignancy. In aggressive breast, melanoma, ovarian, and prostate cancer cells, MGL activity was found to be higher than in nonaggressive malignant cells.[5] Subsequently, the creation of effective MGL inhibitors may help to treat highly aggressive cancers in addition to their proposed use as analgesics.

Recent evidence, however, has suggested that in lung, breast, ovary, stomach, and colorectal cancer, MGL expression was reduced. In addition to controlling 2-AG degradation and fatty acid synthesis pathways, MGL also interacts with key phospholipids (specifically, the 3-phosphorylated phosphoinositide products of PI-3K) in the PI3K/Akt signaling and tumor growth pathway. MGL serves as a negative effector in the pathway: as the concentration of MGL decreases, Akt phosphorylation increases. [6]

MGL’s role in different body tissues is an ongoing area of research aimed at elucidating its complex role in cancer pathology. MGL’s effect on exogenous cannabinoid medications that are administered to cancer patients as a palliative medication is of particular scientific interes. [5]


References

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 Labar G, Bauvois C, Borel F, Ferrer JL, Wouters J, Lambert DM. Crystal structure of the human monoacylglycerol lipase, a key actor in endocannabinoid signaling. Chembiochem. 2010 Jan 25;11(2):218-27. PMID:19957260 doi:10.1002/cbic.200900621
  2. 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 Bertrand T, Auge F, Houtmann J, Rak A, Vallee F, Mikol V, Berne PF, Michot N, Cheuret D, Hoornaert C, Mathieu M. Structural basis for human monoglyceride lipase inhibition. J Mol Biol. 2010 Feb 26;396(3):663-73. Epub 2009 Dec 3. PMID:19962385 doi:10.1016/j.jmb.2009.11.060
  3. 3.0 3.1 3.2 3.3 3.4 3.5 3.6 Schalk-Hihi C, Schubert C, Alexander R, Bayoumy S, Clemente JC, Deckman I, Desjarlais RL, Dzordzorme KC, Flores CM, Grasberger B, Kranz JK, Lewandowski F, Liu L, Ma H, Maguire D, Macielag MJ, McDonnell ME, Haarlander TM, Miller R, Milligan C, Reynolds C, Kuo LC. Crystal structure of a soluble form of human monoglyceride lipase in complex with an inhibitor at 1.35 A resolution. Protein Sci. 2011 Feb 3. doi: 10.1002/pro.596. PMID:21308848 doi:10.1002/pro.596
  4. 4.0 4.1 Blankman JL, Simon GM, Cravatt BF. A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem Biol. 2007 Dec;14(12):1347-56. PMID:18096503 doi:http://dx.doi.org/10.1016/j.chembiol.2007.11.006
  5. 5.0 5.1 5.2 5.3 5.4 Nomura DK, Lombardi DP, Chang JW, Niessen S, Ward AM, Long JZ, Hoover HH, Cravatt BF. Monoacylglycerol lipase exerts dual control over endocannabinoid and fatty acid pathways to support prostate cancer. Chem Biol. 2011 Jul 29;18(7):846-56. doi: 10.1016/j.chembiol.2011.05.009. PMID:21802006 doi:http://dx.doi.org/10.1016/j.chembiol.2011.05.009
  6. 6.0 6.1 6.2 Sun H, Jiang L, Luo X, Jin W, He Q, An J, Lui K, Shi J, Rong R, Su W, Lucchesi C, Liu Y, Sheikh MS, Huang Y. Potential tumor-suppressive role of monoglyceride lipase in human colorectal cancer. Oncogene. 2013 Jan 10;32(2):234-41. doi: 10.1038/onc.2012.34. Epub 2012 Feb 20. PMID:22349814 doi:http://dx.doi.org/10.1038/onc.2012.34
Personal tools