2ldj
From Proteopedia
(Difference between revisions)
Line 3: | Line 3: | ||
== Structural highlights == | == Structural highlights == | ||
[[2ldj]] is a 1 chain structure. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2LDJ OCA]. <br> | [[2ldj]] is a 1 chain structure. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2LDJ OCA]. <br> | ||
+ | <b>[[Non-Standard_Residue|NonStd Res:]]</b> <scene name='pdbligand=DGN:D-GLUTAMINE'>DGN</scene><br> | ||
<b>Activity:</b> <span class='plainlinks'>[http://en.wikipedia.org/wiki/Glucokinase Glucokinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.1.2 2.7.1.2] </span><br> | <b>Activity:</b> <span class='plainlinks'>[http://en.wikipedia.org/wiki/Glucokinase Glucokinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.1.2 2.7.1.2] </span><br> | ||
+ | <b>Resources:</b> <span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2ldj FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2ldj OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2ldj RCSB], [http://www.ebi.ac.uk/pdbsum/2ldj PDBsum]</span><br> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Judicious incorporation of d-amino acids in engineered proteins confers many advantages such as preventing degradation by endogenous proteases and promoting novel structures and functions not accessible to homochiral polypeptides. Glycine to d-alanine substitutions at the carboxy termini can stabilize alpha-helices by reducing conformational entropy. Beyond alanine, we propose additional side chain effects on the degree of stabilization conferred by d-amino acid substitutions. A detailed, molecular understanding of backbone and side chain interactions is important for developing rational, broadly applicable strategies in using d-amino acids to increase protein thermostability. Insight from structural bioinformatics combined with computational protein design can successfully guide the selection of stabilizing d-amino acid mutations. Substituting a key glycine in the Trp-cage miniprotein with d-Gln dramatically stabilizes the fold without altering the protein backbone. Stabilities of individual substitutions can be understood in terms of the balance of intramolecular forces both at the alpha-helix C-terminus and throughout the protein. | Judicious incorporation of d-amino acids in engineered proteins confers many advantages such as preventing degradation by endogenous proteases and promoting novel structures and functions not accessible to homochiral polypeptides. Glycine to d-alanine substitutions at the carboxy termini can stabilize alpha-helices by reducing conformational entropy. Beyond alanine, we propose additional side chain effects on the degree of stabilization conferred by d-amino acid substitutions. A detailed, molecular understanding of backbone and side chain interactions is important for developing rational, broadly applicable strategies in using d-amino acids to increase protein thermostability. Insight from structural bioinformatics combined with computational protein design can successfully guide the selection of stabilizing d-amino acid mutations. Substituting a key glycine in the Trp-cage miniprotein with d-Gln dramatically stabilizes the fold without altering the protein backbone. Stabilities of individual substitutions can be understood in terms of the balance of intramolecular forces both at the alpha-helix C-terminus and throughout the protein. |
Revision as of 10:23, 30 April 2014
1H Chemical Shift Assignments and structure of Trp-Cage mini-protein with D-amino acid
|