4cxf

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 2: Line 2:
<StructureSection load='4cxf' size='340' side='right' caption='[[4cxf]], [[Resolution|resolution]] 1.75&Aring;' scene=''>
<StructureSection load='4cxf' size='340' side='right' caption='[[4cxf]], [[Resolution|resolution]] 1.75&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
[[4cxf]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4CXF OCA]. <br>
+
<table><tr><td colspan='2'>[[4cxf]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4CXF OCA]. <br>
-
<b>[[Ligand|Ligands:]]</b> <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene><br>
+
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene><br>
-
<b>Activity:</b> <span class='plainlinks'>[http://en.wikipedia.org/wiki/Glucokinase Glucokinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.1.2 2.7.1.2] </span><br>
+
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glucokinase Glucokinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.1.2 2.7.1.2] </span></td></tr>
-
<b>Resources:</b> <span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4cxf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4cxf OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4cxf RCSB], [http://www.ebi.ac.uk/pdbsum/4cxf PDBsum]</span><br>
+
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4cxf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4cxf OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4cxf RCSB], [http://www.ebi.ac.uk/pdbsum/4cxf PDBsum]</span></td></tr>
 +
<table>
 +
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Gene expression in bacteria is regulated at the level of transcription initiation, a process driven by sigma factors. The regulation of sigma factor activity proceeds from the regulation of their cytoplasmic availability, which relies on specific inhibitory proteins called anti-sigma factors. With anti-sigma factors regulating their availability according to diverse cues, extracytoplasmic function sigma factors (sigmaECF) form a major signal transduction system in bacteria. Here, structure:function relationships have been characterized in an emerging class of minimal-size transmembrane anti-sigma factors, using CnrY from Cupriavidus metallidurans CH34 as a model. This study reports the 1.75-A-resolution structure of CnrY cytosolic domain in complex with CnrH, its cognate sigmaECF, and identifies a small hydrophobic knob in CnrY as the major determinant of this interaction in vivo. Unsuspected structural similarity with the molecular switch regulating the general stress response in alpha-proteobacteria unravels a new class of anti-sigma factors targeting sigmaECF. Members of this class carry out their function via a 30-residue stretch that displays helical propensity but no canonical structure on its own.
Gene expression in bacteria is regulated at the level of transcription initiation, a process driven by sigma factors. The regulation of sigma factor activity proceeds from the regulation of their cytoplasmic availability, which relies on specific inhibitory proteins called anti-sigma factors. With anti-sigma factors regulating their availability according to diverse cues, extracytoplasmic function sigma factors (sigmaECF) form a major signal transduction system in bacteria. Here, structure:function relationships have been characterized in an emerging class of minimal-size transmembrane anti-sigma factors, using CnrY from Cupriavidus metallidurans CH34 as a model. This study reports the 1.75-A-resolution structure of CnrY cytosolic domain in complex with CnrH, its cognate sigmaECF, and identifies a small hydrophobic knob in CnrY as the major determinant of this interaction in vivo. Unsuspected structural similarity with the molecular switch regulating the general stress response in alpha-proteobacteria unravels a new class of anti-sigma factors targeting sigmaECF. Members of this class carry out their function via a 30-residue stretch that displays helical propensity but no canonical structure on its own.
Line 12: Line 14:
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
 +
</div>
== References ==
== References ==
<references/>
<references/>

Revision as of 09:25, 1 May 2014

Structure of CnrH in complex with the cytosolic domain of CnrY.

4cxf, resolution 1.75Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Views
Personal tools
Navigation
Toolbox