3wcn
From Proteopedia
(Difference between revisions)
Line 2: | Line 2: | ||
<StructureSection load='3wcn' size='340' side='right' caption='[[3wcn]], [[Resolution|resolution]] 3.35Å' scene=''> | <StructureSection load='3wcn' size='340' side='right' caption='[[3wcn]], [[Resolution|resolution]] 3.35Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
- | [[3wcn]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Aquae Aquae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3WCN OCA]. <br> | + | <table><tr><td colspan='2'>[[3wcn]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Aquae Aquae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3WCN OCA]. <br> |
- | <b>[[Ligand|Ligands:]]</b> <scene name='pdbligand=THJ:THIOSULFATE'>THJ</scene><br> | + | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=THJ:THIOSULFATE'>THJ</scene><br> |
- | <b>[[Non-Standard_Residue|NonStd Res:]]</b> <scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene>< | + | <tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> |
- | <b>[[Related_structure|Related:]]</b> [[3w1h|3w1h]], [[3w1i|3w1i]], [[3w1j|3w1j]], [[3w1k|3w1k]], [[3wco|3wco]]< | + | <tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3w1h|3w1h]], [[3w1i|3w1i]], [[3w1j|3w1j]], [[3w1k|3w1k]], [[3wco|3wco]]</td></tr> |
- | <b>Activity:</b> <span class='plainlinks'>[http://en.wikipedia.org/wiki/Glucokinase Glucokinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.1.2 2.7.1.2] </span>< | + | <tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">aq_1031, selA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=224324 AQUAE])</td></tr> |
- | <b>Resources:</b> <span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3wcn FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3wcn OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3wcn RCSB], [http://www.ebi.ac.uk/pdbsum/3wcn PDBsum]</span>< | + | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glucokinase Glucokinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.1.2 2.7.1.2] </span></td></tr> |
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3wcn FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3wcn OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3wcn RCSB], [http://www.ebi.ac.uk/pdbsum/3wcn PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
The 21st amino acid, selenocysteine (Sec), is incorporated translationally into proteins and is synthesized on its specific tRNA (tRNASec). In Bacteria, the selenocysteine synthase SelA converts Ser-tRNASec, formed by seryl-tRNA synthetase, to Sec-tRNASec. SelA, a member of the fold-type-I pyridoxal 5'-phosphate-dependent enzyme superfamily, has an exceptional homodecameric quaternary structure with a molecular mass of about 500kDa. Our previously determined crystal structures of Aquifex aeolicus SelA complexed with tRNASec revealed that the ring-shaped decamer is composed of pentamerized SelA dimers, with two SelA dimers arranged to collaboratively interact with one Ser-tRNASec. The SelA catalytic site is close to the dimer-dimer interface, but the significance of the dimer pentamerization in the catalytic site formation remained elusive. In the present study, we examined the quaternary interactions and demonstrated their importance for SelA activity by systematic mutagenesis. Furthermore, we determined the crystal structures of "depentamerized" SelA variants with mutations at the dimer-dimer interface that prevent pentamerization. These dimeric SelA variants formed a distorted and inactivated catalytic site and confirmed that the pentamer interactions are essential for productive catalytic site formation. Intriguingly, the conformation of the non-functional active site of dimeric SelA shares structural features with other fold-type-I pyridoxal 5'-phosphate-dependent enzymes with native dimer or tetramer (dimer-of-dimers) quaternary structures. | The 21st amino acid, selenocysteine (Sec), is incorporated translationally into proteins and is synthesized on its specific tRNA (tRNASec). In Bacteria, the selenocysteine synthase SelA converts Ser-tRNASec, formed by seryl-tRNA synthetase, to Sec-tRNASec. SelA, a member of the fold-type-I pyridoxal 5'-phosphate-dependent enzyme superfamily, has an exceptional homodecameric quaternary structure with a molecular mass of about 500kDa. Our previously determined crystal structures of Aquifex aeolicus SelA complexed with tRNASec revealed that the ring-shaped decamer is composed of pentamerized SelA dimers, with two SelA dimers arranged to collaboratively interact with one Ser-tRNASec. The SelA catalytic site is close to the dimer-dimer interface, but the significance of the dimer pentamerization in the catalytic site formation remained elusive. In the present study, we examined the quaternary interactions and demonstrated their importance for SelA activity by systematic mutagenesis. Furthermore, we determined the crystal structures of "depentamerized" SelA variants with mutations at the dimer-dimer interface that prevent pentamerization. These dimeric SelA variants formed a distorted and inactivated catalytic site and confirmed that the pentamer interactions are essential for productive catalytic site formation. Intriguingly, the conformation of the non-functional active site of dimeric SelA shares structural features with other fold-type-I pyridoxal 5'-phosphate-dependent enzymes with native dimer or tetramer (dimer-of-dimers) quaternary structures. | ||
Line 14: | Line 17: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
== References == | == References == | ||
<references/> | <references/> |
Revision as of 09:36, 1 May 2014
Crystal structure of the depentamerized mutant of selenocysteine synthase SelA
|