2l2p
From Proteopedia
(Difference between revisions)
Line 2: | Line 2: | ||
<StructureSection load='2l2p' size='340' side='right' caption='[[2l2p]], [[NMR_Ensembles_of_Models | 10 NMR models]]' scene=''> | <StructureSection load='2l2p' size='340' side='right' caption='[[2l2p]], [[NMR_Ensembles_of_Models | 10 NMR models]]' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
- | [[2l2p]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Gallus_gallus Gallus gallus]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2L2P OCA]. <br> | + | <table><tr><td colspan='2'>[[2l2p]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Gallus_gallus Gallus gallus]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2L2P OCA]. <br> |
- | <b>[[Related_structure|Related:]]</b> [[1shf|1shf]], [[3cqt|3cqt]], [[2lp5|2lp5]]< | + | </td></tr><tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1shf|1shf]], [[3cqt|3cqt]], [[2lp5|2lp5]]</td></tr> |
- | <b>Activity:</b> <span class='plainlinks'>[http://en.wikipedia.org/wiki/Glucokinase Glucokinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.1.2 2.7.1.2] </span>< | + | <tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">FYN ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9031 Gallus gallus])</td></tr> |
- | <b>Resources:</b> <span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2l2p FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2l2p OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2l2p RCSB], [http://www.ebi.ac.uk/pdbsum/2l2p PDBsum]</span>< | + | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glucokinase Glucokinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.1.2 2.7.1.2] </span></td></tr> |
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2l2p FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2l2p OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2l2p RCSB], [http://www.ebi.ac.uk/pdbsum/2l2p PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Protein-folding intermediates have been implicated in amyloid fibril formation involved in neurodegenerative disorders. However, the structural mechanisms by which intermediates initiate fibrillar aggregation have remained largely elusive. To gain insight, we used relaxation dispersion nuclear magnetic resonance spectroscopy to determine the structure of a low-populated, on-pathway folding intermediate of the A39V/N53P/V55L (A, Ala; V, Val; N, Asn; P, Pro; L, Leu) Fyn SH3 domain. The carboxyl terminus remains disordered in this intermediate, thereby exposing the aggregation-prone amino-terminal beta strand. Accordingly, mutants lacking the carboxyl terminus and thus mimicking the intermediate fail to safeguard the folding route and spontaneously form fibrillar aggregates. The structure provides a detailed characterization of the non-native interactions stabilizing an aggregation-prone intermediate under native conditions and insight into how such an intermediate can derail folding and initiate fibrillation. | Protein-folding intermediates have been implicated in amyloid fibril formation involved in neurodegenerative disorders. However, the structural mechanisms by which intermediates initiate fibrillar aggregation have remained largely elusive. To gain insight, we used relaxation dispersion nuclear magnetic resonance spectroscopy to determine the structure of a low-populated, on-pathway folding intermediate of the A39V/N53P/V55L (A, Ala; V, Val; N, Asn; P, Pro; L, Leu) Fyn SH3 domain. The carboxyl terminus remains disordered in this intermediate, thereby exposing the aggregation-prone amino-terminal beta strand. Accordingly, mutants lacking the carboxyl terminus and thus mimicking the intermediate fail to safeguard the folding route and spontaneously form fibrillar aggregates. The structure provides a detailed characterization of the non-native interactions stabilizing an aggregation-prone intermediate under native conditions and insight into how such an intermediate can derail folding and initiate fibrillation. | ||
Line 12: | Line 15: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
== References == | == References == | ||
<references/> | <references/> |
Revision as of 09:46, 1 May 2014
Folding Intermediate of the Fyn SH3 A39V/N53P/V55L from NMR Relaxation Dispersion Experiments
|