2irv

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 2: Line 2:
<StructureSection load='2irv' size='340' side='right' caption='[[2irv]], [[Resolution|resolution]] 2.30&Aring;' scene=''>
<StructureSection load='2irv' size='340' side='right' caption='[[2irv]], [[Resolution|resolution]] 2.30&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
[[2irv]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. The August 2011 RCSB PDB [http://pdb.rcsb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/index.html Molecule of the Month] feature on ''Rhomboid Protease GlpG'' by David Goodsell is [http://dx.doi.org/10.2210/rcsb_pdb/mom_2011_8 10.2210/rcsb_pdb/mom_2011_8]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2IRV OCA]. <br>
+
<table><tr><td colspan='2'>[[2irv]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. The August 2011 RCSB PDB [http://pdb.rcsb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/index.html Molecule of the Month] feature on ''Rhomboid Protease GlpG'' by David Goodsell is [http://dx.doi.org/10.2210/rcsb_pdb/mom_2011_8 10.2210/rcsb_pdb/mom_2011_8]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2IRV OCA]. <br>
-
<b>[[Ligand|Ligands:]]</b> <scene name='pdbligand=LDA:LAURYL+DIMETHYLAMINE-N-OXIDE'>LDA</scene>, <scene name='pdbligand=LMT:DODECYL-BETA-D-MALTOSIDE'>LMT</scene>, <scene name='pdbligand=PGV:(1R)-2-{[{[(2S)-2,3-DIHYDROXYPROPYL]OXY}(HYDROXY)PHOSPHORYL]OXY}-1-[(PALMITOYLOXY)METHYL]ETHYL+(11E)-OCTADEC-11-ENOATE'>PGV</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene><br>
+
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=LDA:LAURYL+DIMETHYLAMINE-N-OXIDE'>LDA</scene>, <scene name='pdbligand=LMT:DODECYL-BETA-D-MALTOSIDE'>LMT</scene>, <scene name='pdbligand=PGV:(1R)-2-{[{[(2S)-2,3-DIHYDROXYPROPYL]OXY}(HYDROXY)PHOSPHORYL]OXY}-1-[(PALMITOYLOXY)METHYL]ETHYL+(11E)-OCTADEC-11-ENOATE'>PGV</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene><br>
-
<b>[[Related_structure|Related:]]</b> [[2ic8|2ic8]]<br>
+
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2ic8|2ic8]]</td></tr>
-
<b>Activity:</b> <span class='plainlinks'>[http://en.wikipedia.org/wiki/Glucokinase Glucokinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.1.2 2.7.1.2] </span><br>
+
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">glpG ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 Escherichia coli])</td></tr>
-
<b>Resources:</b> <span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2irv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2irv OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2irv RCSB], [http://www.ebi.ac.uk/pdbsum/2irv PDBsum]</span><br>
+
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glucokinase Glucokinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.1.2 2.7.1.2] </span></td></tr>
 +
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2irv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2irv OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2irv RCSB], [http://www.ebi.ac.uk/pdbsum/2irv PDBsum]</span></td></tr>
 +
<table>
== Evolutionary Conservation ==
== Evolutionary Conservation ==
-
[[Image:Consurf_key_small.gif|right]]
+
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
Check<jmol>
<jmolCheckbox>
<jmolCheckbox>
Line 17: Line 19:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Intramembrane proteases catalyze peptide bond cleavage of integral membrane protein substrates. This activity is crucial for many biological and pathological processes. Rhomboids are evolutionarily widespread intramembrane serine proteases. Here, we present the 2.3-A-resolution crystal structure of a rhomboid from Escherichia coli. The enzyme has six transmembrane helices, five of which surround a short TM4, which starts deep within the membrane at the catalytic serine residue. Thus, the catalytic serine is in an externally exposed cavity, which provides a hydrophilic environment for proteolysis. Our results reveal a mechanism to enable water-dependent catalysis at the depth of the hydrophobic milieu of the membrane and suggest how substrates gain access to the sequestered rhomboid active site.
Intramembrane proteases catalyze peptide bond cleavage of integral membrane protein substrates. This activity is crucial for many biological and pathological processes. Rhomboids are evolutionarily widespread intramembrane serine proteases. Here, we present the 2.3-A-resolution crystal structure of a rhomboid from Escherichia coli. The enzyme has six transmembrane helices, five of which surround a short TM4, which starts deep within the membrane at the catalytic serine residue. Thus, the catalytic serine is in an externally exposed cavity, which provides a hydrophilic environment for proteolysis. Our results reveal a mechanism to enable water-dependent catalysis at the depth of the hydrophobic milieu of the membrane and suggest how substrates gain access to the sequestered rhomboid active site.
Line 23: Line 26:
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
 +
</div>
== References ==
== References ==
<references/>
<references/>

Revision as of 09:51, 1 May 2014

Crystal structure of GlpG, a rhomboid intramembrane serine protease

2irv, resolution 2.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Views
Personal tools
Navigation
Toolbox