2lhn

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 2: Line 2:
<StructureSection load='2lhn' size='340' side='right' caption='[[2lhn]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''>
<StructureSection load='2lhn' size='340' side='right' caption='[[2lhn]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''>
== Structural highlights ==
== Structural highlights ==
-
[[2lhn]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae_s288c Saccharomyces cerevisiae s288c]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2LHN OCA]. <br>
+
<table><tr><td colspan='2'>[[2lhn]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae_s288c Saccharomyces cerevisiae s288c]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2LHN OCA]. <br>
-
<b>[[Ligand|Ligands:]]</b> <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene><br>
+
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene><br>
-
<b>Activity:</b> <span class='plainlinks'>[http://en.wikipedia.org/wiki/Glucokinase Glucokinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.1.2 2.7.1.2] </span><br>
+
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">NAB2, YGL122C ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=559292 Saccharomyces cerevisiae S288c])</td></tr>
-
<b>Resources:</b> <span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2lhn FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2lhn OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2lhn RCSB], [http://www.ebi.ac.uk/pdbsum/2lhn PDBsum]</span><br>
+
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glucokinase Glucokinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.1.2 2.7.1.2] </span></td></tr>
 +
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2lhn FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2lhn OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2lhn RCSB], [http://www.ebi.ac.uk/pdbsum/2lhn PDBsum]</span></td></tr>
 +
<table>
 +
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Polyadenylation regulation and efficient nuclear export of mature mRNPs both require the polyadenosine-RNA-binding protein, Nab2, which contains seven CCCH Zn fingers. We describe here the solution structure of fingers 5-7, which are necessary and sufficient for high-affinity polyadenosine-RNA binding, and identify key residues involved. These Zn fingers form a single structural unit. Structural coherence is lost in the RNA-binding compromised Nab2-C437S mutant, which also suppresses the rat8-2 allele of RNA helicase Dbp5. Structure-guided Nab2 variants indicate that dbp5(rat8-2) suppression is more closely linked to hyperadenylation and suppression of mutant alleles of the nuclear RNA export adaptor, Yra1, than to affinity for polyadenosine-RNA. These results indicate that, in addition to modulating polyA tail length, Nab2 has an unanticipated function associated with generating export-competent mRNPs, and that changes within fingers 5-7 lead to suboptimal assembly of mRNP export complexes that are more easily disassembled by Dbp5 upon reaching the cytoplasm.
Polyadenylation regulation and efficient nuclear export of mature mRNPs both require the polyadenosine-RNA-binding protein, Nab2, which contains seven CCCH Zn fingers. We describe here the solution structure of fingers 5-7, which are necessary and sufficient for high-affinity polyadenosine-RNA binding, and identify key residues involved. These Zn fingers form a single structural unit. Structural coherence is lost in the RNA-binding compromised Nab2-C437S mutant, which also suppresses the rat8-2 allele of RNA helicase Dbp5. Structure-guided Nab2 variants indicate that dbp5(rat8-2) suppression is more closely linked to hyperadenylation and suppression of mutant alleles of the nuclear RNA export adaptor, Yra1, than to affinity for polyadenosine-RNA. These results indicate that, in addition to modulating polyA tail length, Nab2 has an unanticipated function associated with generating export-competent mRNPs, and that changes within fingers 5-7 lead to suboptimal assembly of mRNP export complexes that are more easily disassembled by Dbp5 upon reaching the cytoplasm.
Line 12: Line 15:
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
 +
</div>
== References ==
== References ==
<references/>
<references/>

Revision as of 09:53, 1 May 2014

RNA-binding zinc finger protein

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Views
Personal tools
Navigation
Toolbox