We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.

2kjx

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 2: Line 2:
<StructureSection load='2kjx' size='340' side='right' caption='[[2kjx]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''>
<StructureSection load='2kjx' size='340' side='right' caption='[[2kjx]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''>
== Structural highlights ==
== Structural highlights ==
-
[[2kjx]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2KJX OCA]. <br>
+
<table><tr><td colspan='2'>[[2kjx]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2KJX OCA]. <br>
-
<b>Activity:</b> <span class='plainlinks'>[http://en.wikipedia.org/wiki/Glucokinase Glucokinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.1.2 2.7.1.2] </span><br>
+
</td></tr><tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">JTB ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])</td></tr>
-
<b>Resources:</b> <span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2kjx FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2kjx OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2kjx RCSB], [http://www.ebi.ac.uk/pdbsum/2kjx PDBsum]</span><br>
+
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glucokinase Glucokinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.1.2 2.7.1.2] </span></td></tr>
 +
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2kjx FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2kjx OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2kjx RCSB], [http://www.ebi.ac.uk/pdbsum/2kjx PDBsum]</span></td></tr>
 +
<table>
== Evolutionary Conservation ==
== Evolutionary Conservation ==
-
[[Image:Consurf_key_small.gif|right]]
+
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
Check<jmol>
<jmolCheckbox>
<jmolCheckbox>
Line 15: Line 17:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Jumping Translocation Breakpoint (JTB) is an orphan receptor that is conserved from nematodes to humans and whose gene expression in humans is strikingly upregulated in diverse types of cancers. Translocations occur frequently at the hJTB genomic locus, leading to multiple copies of a truncated JTB gene, which potentially encodes a soluble secreted ectodomain. In addition, JTB and its orthologs likely represent a unique and ancient protein family since homologs could not be identified by direct sequence comparison. In the present study, we have determined the NMR solution structure of the N-terminal ectodomain of human JTB, showing that its fold architecture is a new variant of a three-beta-strand antiparallel beta-meander. The JTB structure has a distant relationship to the midkine/pleiotrophin fold, particularly in the conservation of distinctive disulfide bridge patterns. The structure of this newly characterized small cysteine-rich domain suggests potential involvement of JTB in interactions with proteins or extracellular matrix and may help to uncover the elusive biological functions of this protein.
Jumping Translocation Breakpoint (JTB) is an orphan receptor that is conserved from nematodes to humans and whose gene expression in humans is strikingly upregulated in diverse types of cancers. Translocations occur frequently at the hJTB genomic locus, leading to multiple copies of a truncated JTB gene, which potentially encodes a soluble secreted ectodomain. In addition, JTB and its orthologs likely represent a unique and ancient protein family since homologs could not be identified by direct sequence comparison. In the present study, we have determined the NMR solution structure of the N-terminal ectodomain of human JTB, showing that its fold architecture is a new variant of a three-beta-strand antiparallel beta-meander. The JTB structure has a distant relationship to the midkine/pleiotrophin fold, particularly in the conservation of distinctive disulfide bridge patterns. The structure of this newly characterized small cysteine-rich domain suggests potential involvement of JTB in interactions with proteins or extracellular matrix and may help to uncover the elusive biological functions of this protein.
Line 21: Line 24:
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
 +
</div>
== References ==
== References ==
<references/>
<references/>

Revision as of 10:01, 1 May 2014

Solution structure of the extracellular domain of JTB

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Views
Personal tools
Navigation
Toolbox