2k1n

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 2: Line 2:
<StructureSection load='2k1n' size='340' side='right' caption='[[2k1n]], [[NMR_Ensembles_of_Models | 10 NMR models]]' scene=''>
<StructureSection load='2k1n' size='340' side='right' caption='[[2k1n]], [[NMR_Ensembles_of_Models | 10 NMR models]]' scene=''>
== Structural highlights ==
== Structural highlights ==
-
[[2k1n]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/Bacillus_subtilis Bacillus subtilis]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2K1N OCA]. <br>
+
<table><tr><td colspan='2'>[[2k1n]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/Bacillus_subtilis Bacillus subtilis]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2K1N OCA]. <br>
-
<b>[[Related_structure|Related:]]</b> [[1z0r|1z0r]]<br>
+
</td></tr><tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1z0r|1z0r]]</td></tr>
-
<b>Activity:</b> <span class='plainlinks'>[http://en.wikipedia.org/wiki/Glucokinase Glucokinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.1.2 2.7.1.2] </span><br>
+
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">abrB, cpsX ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1423 Bacillus subtilis])</td></tr>
-
<b>Resources:</b> <span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2k1n FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2k1n OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2k1n RCSB], [http://www.ebi.ac.uk/pdbsum/2k1n PDBsum]</span><br>
+
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glucokinase Glucokinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.1.2 2.7.1.2] </span></td></tr>
 +
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2k1n FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2k1n OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2k1n RCSB], [http://www.ebi.ac.uk/pdbsum/2k1n PDBsum]</span></td></tr>
 +
<table>
== Evolutionary Conservation ==
== Evolutionary Conservation ==
-
[[Image:Consurf_key_small.gif|right]]
+
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
Check<jmol>
<jmolCheckbox>
<jmolCheckbox>
Line 16: Line 18:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Understanding the DNA recognition and binding by the AbrB-like family of transcriptional regulators is of significant interest since these proteins enable bacteria to elicit the appropriate response to diverse environmental stimuli. Although these "transition-state regulator" proteins have been well characterized at the genetic level, the general and specific mechanisms of DNA binding remain elusive. We present RDC-refined NMR solution structures and dynamic properties of the DNA-binding domains of three Bacillus subtilis transition-state regulators: AbrB, Abh, and SpoVT. We combined previously investigated DNase I footprinting, DNA methylation, gel-shift assays, and mutagenic and NMR studies to generate a structural model of the complex between AbrBN(55) and its cognate promoter, abrB8. These investigations have enabled us to generate a model for the specific nature of the transition-state regulator-DNA interaction, a structure that has remained elusive thus far.
Understanding the DNA recognition and binding by the AbrB-like family of transcriptional regulators is of significant interest since these proteins enable bacteria to elicit the appropriate response to diverse environmental stimuli. Although these "transition-state regulator" proteins have been well characterized at the genetic level, the general and specific mechanisms of DNA binding remain elusive. We present RDC-refined NMR solution structures and dynamic properties of the DNA-binding domains of three Bacillus subtilis transition-state regulators: AbrB, Abh, and SpoVT. We combined previously investigated DNase I footprinting, DNA methylation, gel-shift assays, and mutagenic and NMR studies to generate a structural model of the complex between AbrBN(55) and its cognate promoter, abrB8. These investigations have enabled us to generate a model for the specific nature of the transition-state regulator-DNA interaction, a structure that has remained elusive thus far.
Line 22: Line 25:
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
 +
</div>
== References ==
== References ==
<references/>
<references/>

Revision as of 10:03, 1 May 2014

DNA bound structure of the N-terminal domain of AbrB

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Views
Personal tools
Navigation
Toolbox