4cic
From Proteopedia
(Difference between revisions)
Line 7: | Line 7: | ||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4cic FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4cic OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4cic RCSB], [http://www.ebi.ac.uk/pdbsum/4cic PDBsum]</span></td></tr> | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4cic FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4cic OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4cic RCSB], [http://www.ebi.ac.uk/pdbsum/4cic PDBsum]</span></td></tr> | ||
<table> | <table> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Iron-sulfur clusters function as cofactors of a wide range of proteins, with diverse molecular roles in both prokaryotic and eukaryotic cells. Dedicated machineries assemble the clusters and deliver them to the final acceptor molecules in a tightly regulated process. In the prototypical Gram-negative bacterium Escherichia coli, the two existing iron-sulfur cluster assembly systems, iron-sulfur cluster (ISC) and sulfur assimilation (SUF) pathways, are closely interconnected. The ISC pathway regulator, IscR, is a transcription factor of the helix-turn-helix type that can coordinate a [2Fe-2S] cluster. Redox conditions and iron or sulfur availability modulate the ligation status of the labile IscR cluster, which in turn determines a switch in DNA sequence specificity of the regulator: cluster-containing IscR can bind to a family of gene promoters (type-1) whereas the clusterless form recognizes only a second group of sequences (type-2). However, iron-sulfur cluster biogenesis in Gram-positive bacteria is not so well characterized, and most organisms of this group display only one of the iron-sulfur cluster assembly systems. A notable exception is the unique Gram-positive dissimilatory metal reducing bacterium Thermincola potens, where genes from both systems could be identified, albeit with a diverging organization from that of Gram-negative bacteria. We demonstrated that one of these genes encodes a functional IscR homolog and is likely involved in the regulation of iron-sulfur cluster biogenesis in T. potens. Structural and biochemical characterization of T. potens and E. coli IscR revealed a strikingly similar architecture and unveiled an unforeseen conservation of the unique mechanism of sequence discrimination characteristic of this distinctive group of transcription regulators. | ||
+ | |||
+ | The unique regulation of iron-sulfur cluster biogenesis in a Gram-positive bacterium.,Santos JA, Alonso-Garcia N, Macedo-Ribeiro S, Pereira PJ Proc Natl Acad Sci U S A. 2014 May 20. pii: 201322728. PMID:24847070<ref>PMID:24847070</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Revision as of 04:36, 4 June 2014
T. potens IscR
|