3zqj
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | [[ | + | ==MYCOBACTERIUM TUBERCULOSIS UVRA== |
+ | <StructureSection load='3zqj' size='340' side='right' caption='[[3zqj]], [[Resolution|resolution]] 3.40Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[3zqj]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/Mycobacterium_tuberculosis Mycobacterium tuberculosis]. This structure supersedes the now removed PDB entry [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=2ygr 2ygr]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3ZQJ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3ZQJ FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene><br> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3zqj FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3zqj OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3zqj RCSB], [http://www.ebi.ac.uk/pdbsum/3zqj PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Mycobacterium tuberculosis is an extremely well adapted intracellular human pathogen that is exposed to multiple DNA damaging chemical assaults originating from the host defence mechanisms. As a consequence, this bacterium is thought to possess highly efficient DNA repair machineries, the nucleotide excision repair (NER) system amongst these. Although NER is of central importance to DNA repair in M. tuberculosis, our understanding of the processes in this species is limited. The conserved UvrABC endonuclease represents the multi-enzymatic core in bacterial NER, where the UvrA ATPase provides the DNA lesion-sensing function. The herein reported genetic analysis demonstrates that M. tuberculosis UvrA is important for the repair of nitrosative and oxidative DNA damage. Moreover, our biochemical and structural characterization of recombinant M. tuberculosis UvrA contributes new insights into its mechanism of action. In particular, the structural investigation reveals an unprecedented conformation of the UvrB-binding domain that we propose to be of functional relevance. Taken together, our data suggest UvrA as a potential target for the development of novel anti-tubercular agents and provide a biochemical framework for the identification of small-molecule inhibitors interfering with the NER activity in M. tuberculosis. | ||
- | + | The biological and structural characterization of Mycobacterium tuberculosis UvrA provides novel insights into its mechanism of action.,Rossi F, Khanduja JS, Bortoluzzi A, Houghton J, Sander P, Guthlein C, Davis EO, Springer B, Bottger EC, Relini A, Penco A, Muniyappa K, Rizzi M Nucleic Acids Res. 2011 May 27. PMID:21622956<ref>PMID:21622956</ref> | |
- | The | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
+ | </div> | ||
- | + | ==See Also== | |
- | + | *[[UvrABC|UvrABC]] | |
- | + | == References == | |
- | + | <references/> | |
- | + | __TOC__ | |
- | + | </StructureSection> | |
- | + | ||
- | == | + | |
- | [[ | + | |
- | + | ||
- | == | + | |
- | < | + | |
[[Category: Mycobacterium tuberculosis]] | [[Category: Mycobacterium tuberculosis]] | ||
[[Category: Bortoluzzi, A.]] | [[Category: Bortoluzzi, A.]] |
Revision as of 07:57, 5 June 2014
MYCOBACTERIUM TUBERCULOSIS UVRA
|