4nzm
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | + | ==Crystal structure of the catalytic domain of PPIP5K2 in complex with AMPPNP and 5-PA-InsP5== | |
- | + | <StructureSection load='4nzm' size='340' side='right' caption='[[4nzm]], [[Resolution|resolution]] 2.00Å' scene=''> | |
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[4nzm]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4NZM OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4NZM FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=0EJ:(2-OXO-2-{[(1S,2R,3S,4S,5R,6S)-2,3,4,5,6-PENTAKIS(PHOSPHONOOXY)CYCLOHEXYL]OXY}ETHYL)PHOSPHONIC+ACID'>0EJ</scene>, <scene name='pdbligand=ANP:PHOSPHOAMINOPHOSPHONIC+ACID-ADENYLATE+ESTER'>ANP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene><br> | ||
+ | <tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3t9b|3t9b]], [[4nzo|4nzo]], [[4nzn|4nzn]]</td></tr> | ||
+ | <tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">PPIP5K2, HISPPD1, KIAA0433, VIP2 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4nzm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4nzm OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4nzm RCSB], [http://www.ebi.ac.uk/pdbsum/4nzm PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Diphosphoinositol pentakisphosphate kinase 2 (PPIP5K2) is one of the mammalian PPIP5K isoforms responsible for synthesis of diphosphoinositol polyphosphates (inositol pyrophosphates; PP-InsPs), regulatory molecules that function at the interface of cell signaling and organismic homeostasis. The development of drugs that inhibit PPIP5K2 could have both experimental and therapeutic applications. Here, we describe a synthetic strategy for producing naturally occurring 5-PP-InsP4, as well as several inositol polyphosphate analogs, and we study their interactions with PPIP5K2 using biochemical and structural approaches. These experiments uncover an additional ligand-binding site on the surface of PPIP5K2, adjacent to the catalytic pocket. This site facilitates substrate capture from the bulk phase, prior to transfer into the catalytic pocket. In addition to demonstrating a "catch-and-pass" reaction mechanism in a small molecule kinase, we demonstrate that binding of our analogs to the substrate capture site inhibits PPIP5K2. This work suggests that the substrate-binding site offers new opportunities for targeted drug design. | ||
- | + | Synthetic Inositol Phosphate Analogs Reveal that PPIP5K2 Has a Surface-Mounted Substrate Capture Site that Is a Target for Drug Discovery.,Wang H, Godage HY, Riley AM, Weaver JD, Shears SB, Potter BV Chem Biol. 2014 May 22;21(5):689-99. doi: 10.1016/j.chembiol.2014.03.009. Epub, 2014 Apr 24. PMID:24768307<ref>PMID:24768307</ref> | |
- | + | ||
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | == References == | |
- | == | + | <references/> |
- | <references | + | __TOC__ |
+ | </StructureSection> | ||
+ | [[Category: Human]] | ||
[[Category: Shears, S B.]] | [[Category: Shears, S B.]] | ||
[[Category: Wang, H.]] | [[Category: Wang, H.]] |
Revision as of 06:57, 11 June 2014
Crystal structure of the catalytic domain of PPIP5K2 in complex with AMPPNP and 5-PA-InsP5
|