4o3q
From Proteopedia
(Difference between revisions)
Line 2: | Line 2: | ||
<StructureSection load='4o3q' size='340' side='right' caption='[[4o3q]], [[Resolution|resolution]] 1.72Å' scene=''> | <StructureSection load='4o3q' size='340' side='right' caption='[[4o3q]], [[Resolution|resolution]] 1.72Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[4o3q]] is a 3 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4O3Q OCA]. <br> | + | <table><tr><td colspan='2'>[[4o3q]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4O3Q OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4O3Q FirstGlance]. <br> |
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=XG4:2-DEOXY-5-O-[(R)-HYDROXY{[(R)-HYDROXY(PHOSPHONOOXY)PHOSPHORYL]AMINO}PHOSPHORYL]GUANOSINE'>XG4</scene><br> | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=XG4:2-DEOXY-5-O-[(R)-HYDROXY{[(R)-HYDROXY(PHOSPHONOOXY)PHOSPHORYL]AMINO}PHOSPHORYL]GUANOSINE'>XG4</scene><br> | ||
<tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=8OG:8-OXO-2-DEOXY-GUANOSINE-5-MONOPHOSPHATE'>8OG</scene></td></tr> | <tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=8OG:8-OXO-2-DEOXY-GUANOSINE-5-MONOPHOSPHATE'>8OG</scene></td></tr> | ||
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4o3n|4o3n]], [[4o3o|4o3o]], [[4o3p|4o3p]], [[4o3r|4o3r]], [[4o3s|4o3s]]</td></tr> | <tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4o3n|4o3n]], [[4o3o|4o3o]], [[4o3p|4o3p]], [[4o3r|4o3r]], [[4o3s|4o3s]]</td></tr> | ||
- | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/ | + | <tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">POLH, RAD30, RAD30A, XPV ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> |
+ | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/DNA-directed_DNA_polymerase DNA-directed DNA polymerase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.7.7 2.7.7.7] </span></td></tr> | ||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4o3q FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4o3q OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4o3q RCSB], [http://www.ebi.ac.uk/pdbsum/4o3q PDBsum]</span></td></tr> | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4o3q FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4o3q OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4o3q RCSB], [http://www.ebi.ac.uk/pdbsum/4o3q PDBsum]</span></td></tr> | ||
<table> | <table> | ||
Line 13: | Line 14: | ||
== Function == | == Function == | ||
[[http://www.uniprot.org/uniprot/POLH_HUMAN POLH_HUMAN]] DNA polymerase specifically involved in DNA repair. Plays an important role in translesion synthesis, where the normal high fidelity DNA polymerases cannot proceed and DNA synthesis stalls. Plays an important role in the repair of UV-induced pyrimidine dimers. Depending on the context, it inserts the correct base, but causes frequent base transitions and transversions. May play a role in hypermutation at immunoglobulin genes. Forms a Schiff base with 5'-deoxyribose phosphate at abasic sites, but does not have lyase activity. Targets POLI to replication foci.<ref>PMID:10385124</ref> <ref>PMID:11743006</ref> <ref>PMID:11376341</ref> <ref>PMID:14630940</ref> <ref>PMID:14734526</ref> | [[http://www.uniprot.org/uniprot/POLH_HUMAN POLH_HUMAN]] DNA polymerase specifically involved in DNA repair. Plays an important role in translesion synthesis, where the normal high fidelity DNA polymerases cannot proceed and DNA synthesis stalls. Plays an important role in the repair of UV-induced pyrimidine dimers. Depending on the context, it inserts the correct base, but causes frequent base transitions and transversions. May play a role in hypermutation at immunoglobulin genes. Forms a Schiff base with 5'-deoxyribose phosphate at abasic sites, but does not have lyase activity. Targets POLI to replication foci.<ref>PMID:10385124</ref> <ref>PMID:11743006</ref> <ref>PMID:11376341</ref> <ref>PMID:14630940</ref> <ref>PMID:14734526</ref> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | DNA damage incurred by a multitude of endogenous and exogenous factors constitutes an inevitable challenge for the replication machinery. Cells rely on various mechanisms to either remove lesions or bypass them in a more or less error-prone fashion. The latter pathway involves the Y-family polymerases that catalyze trans-lesion synthesis across sites of damaged DNA. 7,8-Dihydro-8-oxo-2'-deoxyguanosine (8-oxoG) is a major lesion that is a consequence of oxidative stress and is associated with cancer, aging, hepatitis, and infertility. We have used steady-state and transient-state kinetics in conjunction with mass spectrometry to analyze in vitro bypass of 8-oxoG by human DNA polymerase eta (hpol eta). Unlike the high fidelity polymerases that show preferential insertion of A opposite 8-oxoG, hpol eta is capable of bypassing 8-oxoG in a mostly error-free fashion, thus preventing GC-->AT transversion mutations. Crystal structures of ternary hpol eta-DNA complexes and incoming dCTP, dATP, or dGTP opposite 8-oxoG reveal that an arginine from the finger domain assumes a key role in avoiding formation of the nascent 8-oxoG:A pair. That hpol eta discriminates against dATP exclusively at the insertion stage is confirmed by structures of ternary complexes that allow visualization of the extension step. These structures with G:dCTP following either 8-oxoG:C or 8-oxoG:A pairs exhibit virtually identical active site conformations. Our combined data provide a detailed understanding of hpol eta bypass of the most common oxidative DNA lesion. | ||
+ | |||
+ | Kinetics, Structure, and Mechanism of 8-Oxo-7,8-dihydro-2'-deoxyguanosine Bypass by Human DNA Polymerase eta,Patra A, Nagy LD, Zhang Q, Su Y, Muller L, Guengerich FP, Egli M J Biol Chem. 2014 Jun 13;289(24):16867-16882. Epub 2014 Apr 23. PMID:24759104<ref>PMID:24759104</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
== References == | == References == | ||
<references/> | <references/> | ||
Line 18: | Line 27: | ||
</StructureSection> | </StructureSection> | ||
[[Category: DNA-directed DNA polymerase]] | [[Category: DNA-directed DNA polymerase]] | ||
+ | [[Category: Human]] | ||
[[Category: Egli, M.]] | [[Category: Egli, M.]] | ||
[[Category: Patra, A.]] | [[Category: Patra, A.]] |
Revision as of 06:11, 2 July 2014
Crystal structure of human polymerase eta inserting dgtp opposite an 8-oxog containing dna template
|