Sandbox 126

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
 +
<StructureSection load= size=550 side='right' scene='37/372726/Transpeptidase_in_rainbow/1'>
-
<StructureSection load= size=550 side='right' scene='37/372728/Transpeptidase_in_rainbow/2'>
 
==='''Introduction'''===
==='''Introduction'''===
Transpeptidase (TP), also known as penicillin-binding proteins (PBP), catalyze the cross-linking of peptidoglycan polymers during bacterial cell wall synthesis. The natural transpeptidase substrate is the D-Ala D-Ala peptidoglycan side chain terminus. Beta-Lactam (β-Lactam) antibiotics, which include penicillins, cephalosporins and carbapenems, bind and irreversibly inhibit transpeptidases by mimicking the D-Ala-D-Ala moiety, resulting in the inhibition of cell wall synthesis and ultimately bacterial cell growth. Overuse and misuse of beta-lactams has led to the generation of methicillin-resistant ''Staphylococcus aureus'' ([http://en.wikipedia.org/wiki/Methicillin-resistant_Staphylococcus_aureus MRSA]) isolates that have acquired an alternative transpeptidase, PBP2a, which is compromised in its ability to react with beta-lactams. MRSA isolates are resistant to all beta-lactams, can be hospital- or community-acquired, and are often the cause of [http://www.cdc.gov/mrsa/tracking/index.html significant] morbidity and mortality. Futhermore, they are often only susceptible to so-called "last resort antibiotics", such as vancomycin. Recently, two broad range cephalosporins, ceftobiprole and ceftaroline, that bind and inhibit PBP2a have been developed.
Transpeptidase (TP), also known as penicillin-binding proteins (PBP), catalyze the cross-linking of peptidoglycan polymers during bacterial cell wall synthesis. The natural transpeptidase substrate is the D-Ala D-Ala peptidoglycan side chain terminus. Beta-Lactam (β-Lactam) antibiotics, which include penicillins, cephalosporins and carbapenems, bind and irreversibly inhibit transpeptidases by mimicking the D-Ala-D-Ala moiety, resulting in the inhibition of cell wall synthesis and ultimately bacterial cell growth. Overuse and misuse of beta-lactams has led to the generation of methicillin-resistant ''Staphylococcus aureus'' ([http://en.wikipedia.org/wiki/Methicillin-resistant_Staphylococcus_aureus MRSA]) isolates that have acquired an alternative transpeptidase, PBP2a, which is compromised in its ability to react with beta-lactams. MRSA isolates are resistant to all beta-lactams, can be hospital- or community-acquired, and are often the cause of [http://www.cdc.gov/mrsa/tracking/index.html significant] morbidity and mortality. Futhermore, they are often only susceptible to so-called "last resort antibiotics", such as vancomycin. Recently, two broad range cephalosporins, ceftobiprole and ceftaroline, that bind and inhibit PBP2a have been developed.

Revision as of 18:49, 9 July 2014

Drag the structure with the mouse to rotate
Personal tools