1ajs
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | [[ | + | ==REFINEMENT AND COMPARISON OF THE CRYSTAL STRUCTURES OF PIG CYTOSOLIC ASPARTATE AMINOTRANSFERASE AND ITS COMPLEX WITH 2-METHYLASPARTATE== |
+ | <StructureSection load='1ajs' size='340' side='right' caption='[[1ajs]], [[Resolution|resolution]] 1.60Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[1ajs]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Sus_scrofa Sus scrofa]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1AJS OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1AJS FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=PLA:2-[(3-HYDROXY-2-METHYL-5-PHOSPHONOOXYMETHYL-PYRIDIN-4-YLMETHYL)-AMINO]-2-METHYL-SUCCINIC+ACID'>PLA</scene><br> | ||
+ | <tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=LLP:2-LYSINE(3-HYDROXY-2-METHYL-5-PHOSPHONOOXYMETHYL-PYRIDIN-4-YLMETHANE)'>LLP</scene></td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Aspartate_transaminase Aspartate transaminase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.6.1.1 2.6.1.1] </span></td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1ajs FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ajs OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1ajs RCSB], [http://www.ebi.ac.uk/pdbsum/1ajs PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/aj/1ajs_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Two high resolution crystal structures of cytosolic aspartate aminotransferase from pig heart provide additional insights into the stereochemical mechanism for ligand-induced conformational changes in this enzyme. Structures of the homodimeric native structure and its complex with the substrate analog 2-methylaspartate have been refined, respectively, with 1.74-A x-ray diffraction data to an R value of 0.170, and with 1.6-A data to an R value of 0.173. In the presence of 2-methylaspartate, one of the subunits (subunit 1) shows a ligand-induced conformational change that involves a large movement of the small domain (residues 12-49 and 327-412) to produce a "closed" conformation. No such transition is observed in the other subunit (subunit 2), because crystal lattice contacts lock it in an "open" conformation like that adopted by subunit 1 in the absence of substrate. By comparing the open and closed forms of cAspAT, we propose a stereochemical mechanism for the open-to-closed transition that involves the electrostatic neutralization of two active site arginine residues by the negative charges of the incoming substrate, a large change in the backbone (phi,psi) conformational angles of two key glycine residues, and the entropy-driven burial of a stretch of hydrophobic residues on the N-terminal helix. The calculated free energy for the burial of this "hydrophobic plug" appears to be sufficient to serve as the driving force for domain closure. | ||
- | + | Refinement and comparisons of the crystal structures of pig cytosolic aspartate aminotransferase and its complex with 2-methylaspartate.,Rhee S, Silva MM, Hyde CC, Rogers PH, Metzler CM, Metzler DE, Arnone A J Biol Chem. 1997 Jul 11;272(28):17293-302. PMID:9211866<ref>PMID:9211866</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
==See Also== | ==See Also== | ||
*[[Aspartate Aminotransferase|Aspartate Aminotransferase]] | *[[Aspartate Aminotransferase|Aspartate Aminotransferase]] | ||
- | + | == References == | |
- | == | + | <references/> |
- | < | + | __TOC__ |
+ | </StructureSection> | ||
[[Category: Aspartate transaminase]] | [[Category: Aspartate transaminase]] | ||
[[Category: Sus scrofa]] | [[Category: Sus scrofa]] |
Revision as of 08:10, 30 July 2014
REFINEMENT AND COMPARISON OF THE CRYSTAL STRUCTURES OF PIG CYTOSOLIC ASPARTATE AMINOTRANSFERASE AND ITS COMPLEX WITH 2-METHYLASPARTATE
|