1b4g
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | [[ | + | ==CONTROL OF K+ CHANNEL GATING BY PROTEIN PHOSPHORYLATION: STRUCTURAL SWITCHES OF THE INACTIVATION GATE, NMR, 22 STRUCTURES== |
+ | <StructureSection load='1b4g' size='340' side='right' caption='[[1b4g]], [[NMR_Ensembles_of_Models | 22 NMR models]]' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[1b4g]] is a 1 chain structure. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1B4G OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1B4G FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=SEP:PHOSPHOSERINE'>SEP</scene></td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1b4g FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1b4g OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1b4g RCSB], [http://www.ebi.ac.uk/pdbsum/1b4g PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Fast N-type inactivation of voltage-dependent potassium (Kv) channels controls membrane excitability and signal propagation in central neurons and occurs by a 'ball-and-chain'-type mechanism. In this mechanism an N-terminal protein domain (inactivation gate) occludes the pore from the cytoplasmic side. In Kv3.4 channels, inactivation is not fixed but is dynamically regulated by protein phosphorylation. Phosphorylation of several identified serine residues on the inactivation gate leads to reduction or removal of fast inactivation. Here, we investigate the structure-function basis of this phospho-regulation with nuclear magnetic resonance (NMR) spectroscopy and patch-clamp recordings using synthetic inactivation domains (ID). The dephosphorylated ID exhibited compact structure and displayed high-affinity binding to its receptor. Phosphorylation of serine residues in the N- or C-terminal half of the ID resulted in a loss of overall structural stability. However, depending on the residue(s) phosphorylated, distinct structural elements remained stable. These structural changes correlate with the distinct changes in binding and unbinding kinetics underlying the reduced inactivation potency of phosphorylated IDs. | ||
- | + | Control of K+ channel gating by protein phosphorylation: structural switches of the inactivation gate.,Antz C, Bauer T, Kalbacher H, Frank R, Covarrubias M, Kalbitzer HR, Ruppersberg JP, Baukrowitz T, Fakler B Nat Struct Biol. 1999 Feb;6(2):146-50. PMID:10048926<ref>PMID:10048926</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
==See Also== | ==See Also== | ||
*[[Potassium Channel|Potassium Channel]] | *[[Potassium Channel|Potassium Channel]] | ||
- | + | == References == | |
- | == | + | <references/> |
- | < | + | __TOC__ |
+ | </StructureSection> | ||
[[Category: Antz, C.]] | [[Category: Antz, C.]] | ||
[[Category: Bauer, T.]] | [[Category: Bauer, T.]] |
Revision as of 03:16, 7 August 2014
CONTROL OF K+ CHANNEL GATING BY PROTEIN PHOSPHORYLATION: STRUCTURAL SWITCHES OF THE INACTIVATION GATE, NMR, 22 STRUCTURES
|