1byg
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | [[ | + | ==KINASE DOMAIN OF HUMAN C-TERMINAL SRC KINASE (CSK) IN COMPLEX WITH INHIBITOR STAUROSPORINE== |
+ | <StructureSection load='1byg' size='340' side='right' caption='[[1byg]], [[Resolution|resolution]] 2.40Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[1byg]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1BYG OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1BYG FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=STU:STAUROSPORINE'>STU</scene><br> | ||
+ | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Transferase Transferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.10.1 and 2.7.10.2 2.7.10.1 and 2.7.10.2] </span></td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1byg FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1byg OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1byg RCSB], [http://www.ebi.ac.uk/pdbsum/1byg PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/by/1byg_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The crystal structure of the kinase domain of C-terminal Src kinase (CSK) has been determined by molecular replacement, co-complexed with the protein kinase inhibitor staurosporine (crystals belong to the space group P21212 with a=44.5 A, b=120.6 A, c=48.3 A). The final model of CSK has been refined to an R-factor of 19.9 % (Rfree=28.7 %) at 2.4 A resolution. The structure consists of a small, N-terminal lobe made up mostly of a beta-sheet, and a larger C-terminal lobe made up mostly of alpha-helices. The structure reveals atomic details of interactions with staurosporine, which binds in a deep cleft between the lobes. The polypeptide chain fold of CSK is most similar to c-Src, Hck and fibroblast growth factor receptor 1 kinase (FGFR1K) and most dissimilar to insulin receptor kinase (IRK). Interactions between the N and C-terminal lobe are mediated by the bound staurosporine molecule and by hydrogen bonds. In addition, there are several water molecules forming lobe-bridging hydrogen bonds, which may be important for maintaining the catalytic integrity of the kinase. Furthermore, the conserved Lys328 and Glu267 residues utilise water in the formation of a molecular pivot which is essential in allowing relative movement of the N and C-terminal lobes. An analysis of the residues around the ATP-binding site reveals structural differences with other protein tyrosine kinases. Most notable of these are different orientations of the conserved residues Asp332 and Phe333, suggesting that inhibitor binding proceeds via an induced fit. These structural observations have implications for understanding protein tyrosine kinase catalytic mechanisms and for the design of ATP-mimicking inhibitors of protein kinases. | ||
- | + | Structure of the protein tyrosine kinase domain of C-terminal Src kinase (CSK) in complex with staurosporine.,Lamers MB, Antson AA, Hubbard RE, Scott RK, Williams DH J Mol Biol. 1999 Jan 15;285(2):713-25. PMID:9878439<ref>PMID:9878439</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
==See Also== | ==See Also== | ||
- | *[[ | + | *[[Tyrosine kinase|Tyrosine kinase]] |
- | + | == References == | |
- | + | <references/> | |
- | == | + | __TOC__ |
- | < | + | </StructureSection> |
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: Transferase]] | [[Category: Transferase]] |
Revision as of 09:34, 13 August 2014
KINASE DOMAIN OF HUMAN C-TERMINAL SRC KINASE (CSK) IN COMPLEX WITH INHIBITOR STAUROSPORINE
|