1chn
From Proteopedia
(Difference between revisions)
m (Protected "1chn" [edit=sysop:move=sysop]) |
|||
Line 1: | Line 1: | ||
- | [[ | + | ==MAGNESIUM BINDING TO THE BACTERIAL CHEMOTAXIS PROTEIN CHEY RESULTS IN LARGE CONFORMATIONAL CHANGES INVOLVING ITS FUNCTIONAL SURFACE== |
+ | <StructureSection load='1chn' size='340' side='right' caption='[[1chn]], [[Resolution|resolution]] 1.76Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[1chn]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1CHN OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1CHN FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene><br> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1chn FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1chn OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1chn RCSB], [http://www.ebi.ac.uk/pdbsum/1chn PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ch/1chn_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The three-dimensional crystal structure of the bacterial chemotaxis protein CheY with the essential Mg2+ cation bound to the active site reveals large conformational changes caused by the metal binding. Displacements of up to 10 A are observed in several residues at the N terminus of alpha-helix 4 and in the preceding loop. One turn of this helix unwinds, and an Asn residue that was located inside the helix becomes the new N-cap. This supports the important role that N or C-cap residues play in alpha-helix stability. In addition the preceding beta-strand becomes elongated and a new beta-turn appears. The final effect is a significant modification of the surface relief of the protein in a region previously indicated, by genetic analysis, to be essential for CheY function. It is suggested that binding of a divalent cation to CheY could play a significant part in CheY activation and consequently in signal transduction in prokaryotes. | ||
- | + | Magnesium binding to the bacterial chemotaxis protein CheY results in large conformational changes involving its functional surface.,Bellsolell L, Prieto J, Serrano L, Coll M J Mol Biol. 1994 May 13;238(4):489-95. PMID:8176739<ref>PMID:8176739</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | == References == | |
- | + | <references/> | |
- | + | __TOC__ | |
- | + | </StructureSection> | |
- | + | ||
- | == | + | |
- | < | + | |
[[Category: Escherichia coli]] | [[Category: Escherichia coli]] | ||
[[Category: Bellsolell, L.]] | [[Category: Bellsolell, L.]] | ||
[[Category: Coll, M.]] | [[Category: Coll, M.]] | ||
[[Category: Signal transduction protein]] | [[Category: Signal transduction protein]] |
Revision as of 17:07, 20 August 2014
MAGNESIUM BINDING TO THE BACTERIAL CHEMOTAXIS PROTEIN CHEY RESULTS IN LARGE CONFORMATIONAL CHANGES INVOLVING ITS FUNCTIONAL SURFACE
|