1ddi
From Proteopedia
(Difference between revisions)
m (Protected "1ddi" [edit=sysop:move=sysop]) |
|||
Line 1: | Line 1: | ||
- | [[ | + | ==CRYSTAL STRUCTURE OF SIR-FP60== |
+ | <StructureSection load='1ddi' size='340' side='right' caption='[[1ddi]], [[Resolution|resolution]] 2.51Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[1ddi]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1DDI OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1DDI FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=FAD:FLAVIN-ADENINE+DINUCLEOTIDE'>FAD</scene>, <scene name='pdbligand=NAP:NADP+NICOTINAMIDE-ADENINE-DINUCLEOTIDE+PHOSPHATE'>NAP</scene><br> | ||
+ | <tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1ddg|1ddg]]</td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Sulfite_reductase_(NADPH) Sulfite reductase (NADPH)], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.8.1.2 1.8.1.2] </span></td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1ddi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ddi OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1ddi RCSB], [http://www.ebi.ac.uk/pdbsum/1ddi PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/dd/1ddi_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Escherichia coli NADPH-sulfite reductase (SiR) is a 780 kDa multimeric hemoflavoprotein composed of eight alpha-subunits (SiR-FP) and four beta-subunits (SiR-HP) that catalyses the six electron reduction of sulfite to sulfide. Each beta-subunit contains a Fe4S4 cluster and a siroheme, and each alpha-subunit binds one FAD and one FMN as prosthetic groups. The FAD gets electrons from NADPH, and the FMN transfers the electrons to the metal centers of the beta-subunit for sulfite reduction. We report here the 1.94 A X-ray structure of SiR-FP60, a recombinant monomeric fragment of SiR-FP that binds both FAD and FMN and retains the catalytic properties of the native protein. The structure can be divided into three domains. The carboxy-terminal part of the enzyme is composed of an antiparallel beta-barrel which binds the FAD, and a variant of the classical pyridine dinucleotide binding fold which binds NADPH. These two domains form the canonic FNR-like module, typical of the ferredoxin NADP+ reductase family. By analogy with the structure of the cytochrome P450 reductase, the third domain, composed of seven alpha-helices, is supposed to connect the FNR-like module to the N-terminal flavodoxine-like module. In four different crystal forms, the FMN-binding module is absent from electron density maps, although mass spectroscopy, amino acid sequencing and activity experiments carried out on dissolved crystals indicate that a functional module is present in the protein. Our results clearly indicate that the interaction between the FNR-like and the FMN-like modules displays lower affinity than in the case of cytochrome P450 reductase. The flexibility of the FMN-binding domain may be related, as observed in the case of cytochrome bc1, to a domain reorganisation in the course of electron transfer. Thus, a movement of the FMN-binding domain relative to the rest of the enzyme may be a requirement for its optimal positioning relative to both the FNR-like module and the beta-subunit. | ||
- | + | Four crystal structures of the 60 kDa flavoprotein monomer of the sulfite reductase indicate a disordered flavodoxin-like module.,Gruez A, Pignol D, Zeghouf M, Coves J, Fontecave M, Ferrer JL, Fontecilla-Camps JC J Mol Biol. 2000 May 26;299(1):199-212. PMID:10860732<ref>PMID:10860732</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | == References == | |
- | + | <references/> | |
- | + | __TOC__ | |
- | + | </StructureSection> | |
- | + | ||
- | == | + | |
- | < | + | |
[[Category: Escherichia coli]] | [[Category: Escherichia coli]] | ||
[[Category: Coves, J.]] | [[Category: Coves, J.]] |
Revision as of 06:39, 4 September 2014
CRYSTAL STRUCTURE OF SIR-FP60
|