1ebg
From Proteopedia
(Difference between revisions)
| Line 1: | Line 1: | ||
| - | [[ | + | ==CHELATION OF SER 39 TO MG2+ LATCHES A GATE AT THE ACTIVE SITE OF ENOLASE: STRUCTURE OF THE BIS(MG2+) COMPLEX OF YEAST ENOLASE AND THE INTERMEDIATE ANALOG PHOSPHONOACETOHYDROXAMATE AT 2.1 ANGSTROMS RESOLUTION== |
| + | <StructureSection load='1ebg' size='340' side='right' caption='[[1ebg]], [[Resolution|resolution]] 2.10Å' scene=''> | ||
| + | == Structural highlights == | ||
| + | <table><tr><td colspan='2'>[[1ebg]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1EBG OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1EBG FirstGlance]. <br> | ||
| + | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=PAH:PHOSPHONOACETOHYDROXAMIC+ACID'>PAH</scene><br> | ||
| + | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Phosphopyruvate_hydratase Phosphopyruvate hydratase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=4.2.1.11 4.2.1.11] </span></td></tr> | ||
| + | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1ebg FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ebg OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1ebg RCSB], [http://www.ebi.ac.uk/pdbsum/1ebg PDBsum]</span></td></tr> | ||
| + | <table> | ||
| + | == Evolutionary Conservation == | ||
| + | [[Image:Consurf_key_small.gif|200px|right]] | ||
| + | Check<jmol> | ||
| + | <jmolCheckbox> | ||
| + | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/eb/1ebg_consurf.spt"</scriptWhenChecked> | ||
| + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
| + | <text>to colour the structure by Evolutionary Conservation</text> | ||
| + | </jmolCheckbox> | ||
| + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
| + | <div style="clear:both"></div> | ||
| + | <div style="background-color:#fffaf0;"> | ||
| + | == Publication Abstract from PubMed == | ||
| + | The structure of a new crystal form of enolase from bakers' yeast has been solved to 2.1-A resolution. Crystals were grown from poly(ethylene glycol) and KCl at pH 8.2 in the presence of Mg2+ and a reaction intermediate analog, phosphonoacetohydroxamate (PhAH). Crystals belong to space group C2; have unit cell dimensions a = 123.5 A, b = 73.9 A, and c = 94.8 A with beta = 93.3 degrees; and contain one dimer per asymmetric unit. The structure was solved by molecular replacement from the X-ray coordinates of apoenolase [Stec, B., & Lebioda, L. (1990) J. Mol. Biol. 211, 235-248]. Both essential divalent metal ions are observed to be complexed with the inhibitor. The two Mg2+ ions are 4.05 A apart and are bridged by a mu-oxyl ligand from the carbonyl moiety of PhAH. The "high-affinity" Mg2+ coordinates to the carboxylate side chains of Asp 246, Glu 295, and Asp 320, one water molecule, and the hydroxamate and carbonyl oxygens of PhAH. The second Mg2+ coordinates to a phosphonyl oxygen, two water molecules, and the mu-bridge carbonyl oxygen of PhAH. Coordination schemes with respect to PhAH and water ligands are fully consistent with those of the Mn2+ complexes determined spectroscopically [Poyner, R.R., & Reed, G. H. (1992) Biochemistry 31, 7166-7173]. Remaining ligands for the second Mg2+ are the carbonyl oxygen and gamma-oxygen of Ser 39. Chelation of this Ser residue to Mg2+ effectively "latches" a flexible loop extending from Gly 37 through His 43 and closes off the entrance to the active site. The position of the second Mg2+ in the active site provides new insight into the stereochemistry of substrate binding. | ||
| - | + | Chelation of serine 39 to Mg2+ latches a gate at the active site of enolase: structure of the bis(Mg2+) complex of yeast enolase and the intermediate analog phosphonoacetohydroxamate at 2.1-A resolution.,Wedekind JE, Poyner RR, Reed GH, Rayment I Biochemistry. 1994 Aug 9;33(31):9333-42. PMID:8049235<ref>PMID:8049235</ref> | |
| - | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
| - | + | </div> | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
==See Also== | ==See Also== | ||
*[[Enolase|Enolase]] | *[[Enolase|Enolase]] | ||
| - | + | == References == | |
| - | == | + | <references/> |
| - | < | + | __TOC__ |
| + | </StructureSection> | ||
[[Category: Phosphopyruvate hydratase]] | [[Category: Phosphopyruvate hydratase]] | ||
[[Category: Saccharomyces cerevisiae]] | [[Category: Saccharomyces cerevisiae]] | ||
Revision as of 10:47, 10 September 2014
CHELATION OF SER 39 TO MG2+ LATCHES A GATE AT THE ACTIVE SITE OF ENOLASE: STRUCTURE OF THE BIS(MG2+) COMPLEX OF YEAST ENOLASE AND THE INTERMEDIATE ANALOG PHOSPHONOACETOHYDROXAMATE AT 2.1 ANGSTROMS RESOLUTION
| |||||||||||

