1ebb
From Proteopedia
Line 1: | Line 1: | ||
- | [[Image:1ebb.gif|left|200px]] | + | [[Image:1ebb.gif|left|200px]] |
- | + | ||
- | '''BACILLUS STEAROTHERMOPHILUS YHFR''' | + | {{Structure |
+ | |PDB= 1ebb |SIZE=350|CAPTION= <scene name='initialview01'>1ebb</scene>, resolution 2.3Å | ||
+ | |SITE= <scene name='pdbsite=CAT:Presumed+Hydrophobic+Substrate+Binding+Site'>CAT</scene> | ||
+ | |LIGAND= <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene> and <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene> | ||
+ | |ACTIVITY= | ||
+ | |GENE= | ||
+ | }} | ||
+ | |||
+ | '''BACILLUS STEAROTHERMOPHILUS YHFR''' | ||
+ | |||
==Overview== | ==Overview== | ||
Line 7: | Line 16: | ||
==About this Structure== | ==About this Structure== | ||
- | 1EBB is a [ | + | 1EBB is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Geobacillus_stearothermophilus Geobacillus stearothermophilus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1EBB OCA]. |
==Reference== | ==Reference== | ||
- | Structure and mechanism of action of a cofactor-dependent phosphoglycerate mutase homolog from Bacillus stearothermophilus with broad specificity phosphatase activity., Rigden DJ, Mello LV, Setlow P, Jedrzejas MJ, J Mol Biol. 2002 Feb 1;315(5):1129-43. PMID:[http:// | + | Structure and mechanism of action of a cofactor-dependent phosphoglycerate mutase homolog from Bacillus stearothermophilus with broad specificity phosphatase activity., Rigden DJ, Mello LV, Setlow P, Jedrzejas MJ, J Mol Biol. 2002 Feb 1;315(5):1129-43. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/11827481 11827481] |
[[Category: Geobacillus stearothermophilus]] | [[Category: Geobacillus stearothermophilus]] | ||
[[Category: Single protein]] | [[Category: Single protein]] | ||
Line 19: | Line 28: | ||
[[Category: broad specificity phosphatase; dpgm homolog]] | [[Category: broad specificity phosphatase; dpgm homolog]] | ||
- | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu | + | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 10:53:01 2008'' |
Revision as of 08:53, 20 March 2008
| |||||||
, resolution 2.3Å | |||||||
---|---|---|---|---|---|---|---|
Sites: | |||||||
Ligands: | and | ||||||
Coordinates: | save as pdb, mmCIF, xml |
BACILLUS STEAROTHERMOPHILUS YHFR
Overview
The crystal structure of Bacillus stearothermophilus PhoE (originally termed YhfR), a broad specificity monomeric phosphatase with a molecular mass of approximately 24 kDa, has been solved at 2.3 A resolution in order to investigate its structure and function. PhoE, already identified as a homolog of a cofactor-dependent phosphoglycerate mutase, shares with the latter an alpha/beta/alpha sandwich structure spanning, as a structural excursion, a smaller subdomain composed of two alpha-helices and one short beta-strand. The active site contains residues from both the alpha/beta/alpha sandwich and the sub-domain. With the exception of the hydrophilic catalytic machinery conserved throughout the cofactor-dependent phosphoglycerate mutase family, the active-site cleft is strikingly hydrophobic. Docking studies with two diverse, favored substrates show that 3-phosphoglycerate may bind to the catalytic core, while alpha-napthylphosphate binding also involves the hydrophobic portion of the active-site cleft. Combining a highly favorable phospho group binding site common to these substrate binding modes and data from related enzymes, a catalytic mechanism can be proposed that involves formation of a phosphohistidine intermediate on His10 and likely acid-base behavior of Glu83. Other structural factors contributing to the broad substrate specificity of PhoE can be identified. The dynamic independence of the subdomain may enable the active-site cleft to accommodate substrates of different sizes, although similar motions are present in simulations of cofactor-dependent phosphoglycerate mutases, perhaps favoring a more general functional role. A significant number of entries in protein sequence databases, particularly from unfinished microbial genomes, are more similar to PhoE than to cofactor-dependent phosphoglycerate mutases or to fructose-2,6-bisphosphatases. This PhoE structure will therefore serve as a valuable basis for inference of structural and functional characteristics of these proteins.
About this Structure
1EBB is a Single protein structure of sequence from Geobacillus stearothermophilus. Full crystallographic information is available from OCA.
Reference
Structure and mechanism of action of a cofactor-dependent phosphoglycerate mutase homolog from Bacillus stearothermophilus with broad specificity phosphatase activity., Rigden DJ, Mello LV, Setlow P, Jedrzejas MJ, J Mol Biol. 2002 Feb 1;315(5):1129-43. PMID:11827481
Page seeded by OCA on Thu Mar 20 10:53:01 2008