1e55
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | [[ | + | ==CRYSTAL STRUCTURE OF THE INACTIVE MUTANT MONOCOT (MAIZE ZMGLU1) BETA-GLUCOSIDASE ZMGLUE191D IN COMPLEX WITH THE COMPETITIVE INHIBITOR DHURRIN== |
+ | <StructureSection load='1e55' size='340' side='right' caption='[[1e55]], [[Resolution|resolution]] 2.00Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[1e55]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Zea_mays Zea mays]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1E55 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1E55 FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=DHR:(2S)-HYDROXY(4-HYDROXYPHENYL)ETHANENITRILE'>DHR</scene>, <scene name='pdbligand=GLC:ALPHA-D-GLUCOSE'>GLC</scene><br> | ||
+ | <tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1e1e|1e1e]], [[1e1f|1e1f]], [[1e4l|1e4l]], [[1e4n|1e4n]], [[1e56|1e56]]</td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Beta-glucosidase Beta-glucosidase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.21 3.2.1.21] </span></td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1e55 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1e55 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1e55 RCSB], [http://www.ebi.ac.uk/pdbsum/1e55 PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/e5/1e55_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The mechanism and the site of substrate (i.e., aglycone) recognition and specificity were investigated in maize beta-glucosidase (Glu1) by x-ray crystallography by using crystals of a catalytically inactive mutant (Glu1E191D) in complex with the natural substrate 2-O-beta-d-glucopyranosyl-4-hydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOAGlc), the free aglycone DIMBOA, and competitive inhibitor para-hydroxy-S-mandelonitrile beta-glucoside (dhurrin). The structures of these complexes and of the free enzyme were solved at 2.1-, 2.1-, 2.0-, and 2.2-A resolution, respectively. The structural data from the complexes allowed us to visualize an intact substrate, free aglycone, or a competitive inhibitor in the slot-like active site of a beta-glucosidase. These data show that the aglycone moiety of the substrate is sandwiched between W378 on one side and F198, F205, and F466 on the other. Thus, specific conformations of these four hydrophobic amino acids and the shape of the aglycone-binding site they form determine aglycone recognition and substrate specificity in Glu1. In addition to these four residues, A467 interacts with the 7-methoxy group of DIMBOA. All residues but W378 are variable among beta-glucosidases that differ in substrate specificity, supporting the conclusion that these sites are the basis of aglycone recognition and binding (i.e., substrate specificity) in beta-glucosidases. The data also provide a plausible explanation for the competitive binding of dhurrin to maize beta-glucosidases with high affinity without being hydrolyzed. | ||
- | + | The mechanism of substrate (aglycone) specificity in beta -glucosidases is revealed by crystal structures of mutant maize beta -glucosidase-DIMBOA, -DIMBOAGlc, and -dhurrin complexes.,Czjzek M, Cicek M, Zamboni V, Bevan DR, Henrissat B, Esen A Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13555-60. PMID:11106394<ref>PMID:11106394</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
==See Also== | ==See Also== | ||
*[[Beta-glucosidase|Beta-glucosidase]] | *[[Beta-glucosidase|Beta-glucosidase]] | ||
- | + | == References == | |
- | == | + | <references/> |
- | < | + | __TOC__ |
+ | </StructureSection> | ||
[[Category: Beta-glucosidase]] | [[Category: Beta-glucosidase]] | ||
[[Category: Zea mays]] | [[Category: Zea mays]] |
Revision as of 10:57, 10 September 2014
CRYSTAL STRUCTURE OF THE INACTIVE MUTANT MONOCOT (MAIZE ZMGLU1) BETA-GLUCOSIDASE ZMGLUE191D IN COMPLEX WITH THE COMPETITIVE INHIBITOR DHURRIN
|