1gtu

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
m (Protected "1gtu" [edit=sysop:move=sysop])
Line 1: Line 1:
-
[[Image:1gtu.png|left|200px]]
+
==LIGAND-FREE HUMAN GLUTATHIONE S-TRANSFERASE M1A-1A==
 +
<StructureSection load='1gtu' size='340' side='right' caption='[[1gtu]], [[Resolution|resolution]] 2.68&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[1gtu]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1GTU OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1GTU FirstGlance]. <br>
 +
</td></tr><tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GSTM1A ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])</td></tr>
 +
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glutathione_transferase Glutathione transferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.5.1.18 2.5.1.18] </span></td></tr>
 +
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1gtu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1gtu OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1gtu RCSB], [http://www.ebi.ac.uk/pdbsum/1gtu PDBsum]</span></td></tr>
 +
<table>
 +
== Evolutionary Conservation ==
 +
[[Image:Consurf_key_small.gif|200px|right]]
 +
Check<jmol>
 +
<jmolCheckbox>
 +
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/gt/1gtu_consurf.spt"</scriptWhenChecked>
 +
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
 +
<text>to colour the structure by Evolutionary Conservation</text>
 +
</jmolCheckbox>
 +
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
 +
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Domain interchange analyses and site-directed mutagenesis indicate that the His107 residue of the human subunit hGSTM1 has a pronounced influence on catalysis of nucleophilic aromatic substitution reactions, and a H107S substitution accounts for the marked differences in the properties of the homologous hGSTM1-1 (His107) and hGSTM4-4 (Ser107) glutathione S-transferases. Reciprocal replacement of His107 and Ser107 in chimeric enzymes results in reciprocal conversion of catalytic properties. With 1-chloro-2, 4-dinitrobenzene as a substrate, the His107 residue primarily influences the pH dependence of catalysis by lowering the apparent pKa of kcat/Km from 7.8 for the Ser107-containing enzymes to 6.3 for the His107-containing enzymes. There is a parallel shift in the pKa for thiolate anion formation of enzyme-bound GSH. Y6F mutations have no effect on the pKa for these enzymes. Crystal structures of hGSTM1a-1a indicate that the imidazole ring of His107 is oriented toward the substrate binding cleft approximately 6 A from the GSH thiol group. Thus, His107 has the potential to act as a general base in proton transfer mediated through an active site water molecule or directly following a modest conformational change, to promote thiolate anion formation. All wild-type enzymes and H107S chimera have nearly identical equilibrium constants for formation of enzyme-GSH complexes (Kd values of 1-2 x 10(-)6 M); however, KmGSH and Ki values for S-methylglutathione inhibition determined by steady-state kinetics are nearly 100-fold higher. The functions of His107 of hGSTM1a-1a are unexpected in view of a substantial body of previous evidence that excluded participation of histidine residues in the catalytic mechanisms of other glutathione S-transferases. Consequences of His107 involvement in catalysis are also substrate-dependent; in contrast to 1-chloro-2,4-dinitrobenzene, for the nucleophilic addition reaction of GSH to ethacrynic acid, the H107S substitution has no effect on catalysis presumably because product release is rate-limiting.
-
{{STRUCTURE_1gtu| PDB=1gtu | SCENE= }}
+
Functions of His107 in the catalytic mechanism of human glutathione S-transferase hGSTM1a-1a.,Patskovsky YV, Patskovska LN, Listowsky I Biochemistry. 1999 Jan 26;38(4):1193-202. PMID:9930979<ref>PMID:9930979</ref>
-
===LIGAND-FREE HUMAN GLUTATHIONE S-TRANSFERASE M1A-1A===
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
-
{{ABSTRACT_PUBMED_9930979}}
+
==See Also==
-
 
+
*[[Glutathione S-transferase|Glutathione S-transferase]]
-
==About this Structure==
+
== References ==
-
[[1gtu]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1GTU OCA].
+
<references/>
-
 
+
__TOC__
-
==Reference==
+
</StructureSection>
-
<ref group="xtra">PMID:009930979</ref><references group="xtra"/>
+
[[Category: Glutathione transferase]]
[[Category: Glutathione transferase]]
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]

Revision as of 09:02, 28 September 2014

LIGAND-FREE HUMAN GLUTATHIONE S-TRANSFERASE M1A-1A

1gtu, resolution 2.68Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Views
Personal tools
Navigation
Toolbox