1fsy
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | [[ | + | ==AMPC BETA-LACTAMASE FROM E. COLI COMPLEXED WITH INHIBITOR CLOXACILLINBORONIC ACID== |
+ | <StructureSection load='1fsy' size='340' side='right' caption='[[1fsy]], [[Resolution|resolution]] 1.75Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[1fsy]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1FSY OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1FSY FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=105:N-[5-METHYL-3-O-TOLYL-ISOXAZOLE-4-CARBOXYLIC+ACID+AMIDE]+BORONIC+ACID'>105</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene><br> | ||
+ | <tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2bls|2bls]], [[3bls|3bls]], [[1c3b|1c3b]], [[1fsw|1fsw]]</td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Beta-lactamase Beta-lactamase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.5.2.6 3.5.2.6] </span></td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1fsy FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1fsy OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1fsy RCSB], [http://www.ebi.ac.uk/pdbsum/1fsy PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/fs/1fsy_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | BACKGROUND: Penicillins and cephalosporins are among the most widely used and successful antibiotics. The emergence of resistance to these beta-lactams, most often through bacterial expression of beta-lactamases, threatens public health. To understand how beta-lactamases recognize their substrates, it would be helpful to know their binding energies. Unfortunately, these have been difficult to measure because beta-lactams form covalent adducts with beta-lactamases. This has complicated functional analyses and inhibitor design. RESULTS: To investigate the contribution to interaction energy of the key amide (R1) side chain of beta-lactam antibiotics, eight acylglycineboronic acids that bear the side chains of characteristic penicillins and cephalosporins, as well as four other analogs, were synthesized. These transition-state analogs form reversible adducts with serine beta-lactamases. Therefore, binding energies can be calculated directly from K(i) values. The K(i) values measured span four orders of magnitude against the Group I beta-lactamase AmpC and three orders of magnitude against the Group II beta-lactamase TEM-1. The acylglycineboronic acids have K(i) values as low as 20 nM against AmpC and as low as 390 nM against TEM-1. The inhibitors showed little activity against serine proteases, such as chymotrypsin. R1 side chains characteristic of beta-lactam inhibitors did not have better affinity for AmpC than did side chains characteristic of beta-lactam substrates. Two of the inhibitors reversed the resistance of pathogenic bacteria to beta-lactams in cell culture. Structures of two inhibitors in their complexes with AmpC were determined by X-ray crystallography to 1.90 A and 1.75 A resolution; these structures suggest interactions that are important to the affinity of the inhibitors. CONCLUSIONS: Acylglycineboronic acids allow us to begin to dissect interaction energies between beta-lactam side chains and beta-lactamases. Surprisingly, there is little correlation between the affinity contributed by R1 side chains and their occurrence in beta-lactam inhibitors or beta-lactam substrates of serine beta-lactamases. Nevertheless, presented in acylglycineboronic acids, these side chains can lead to inhibitors with high affinities and specificities. The structures of their complexes with AmpC give a molecular context to their affinities and may guide the design of anti-resistance compounds in this series. | ||
- | + | Energetic, structural, and antimicrobial analyses of beta-lactam side chain recognition by beta-lactamases.,Caselli E, Powers RA, Blasczcak LC, Wu CY, Prati F, Shoichet BK Chem Biol. 2001 Jan;8(1):17-31. PMID:11182316<ref>PMID:11182316</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
==See Also== | ==See Also== | ||
*[[Beta-lactamase|Beta-lactamase]] | *[[Beta-lactamase|Beta-lactamase]] | ||
- | + | == References == | |
- | == | + | <references/> |
- | < | + | __TOC__ |
+ | </StructureSection> | ||
[[Category: Beta-lactamase]] | [[Category: Beta-lactamase]] | ||
[[Category: Escherichia coli]] | [[Category: Escherichia coli]] |
Revision as of 09:30, 28 September 2014
AMPC BETA-LACTAMASE FROM E. COLI COMPLEXED WITH INHIBITOR CLOXACILLINBORONIC ACID
|