1gnw
From Proteopedia
(Difference between revisions)
m (Protected "1gnw" [edit=sysop:move=sysop]) |
|||
| Line 1: | Line 1: | ||
| - | [[ | + | ==STRUCTURE OF GLUTATHIONE S-TRANSFERASE== |
| + | <StructureSection load='1gnw' size='340' side='right' caption='[[1gnw]], [[Resolution|resolution]] 2.20Å' scene=''> | ||
| + | == Structural highlights == | ||
| + | <table><tr><td colspan='2'>[[1gnw]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Arabidopsis_thaliana Arabidopsis thaliana]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1GNW OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1GNW FirstGlance]. <br> | ||
| + | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GTX:S-HEXYLGLUTATHIONE'>GTX</scene><br> | ||
| + | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glutathione_transferase Glutathione transferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.5.1.18 2.5.1.18] </span></td></tr> | ||
| + | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1gnw FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1gnw OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1gnw RCSB], [http://www.ebi.ac.uk/pdbsum/1gnw PDBsum]</span></td></tr> | ||
| + | <table> | ||
| + | == Evolutionary Conservation == | ||
| + | [[Image:Consurf_key_small.gif|200px|right]] | ||
| + | Check<jmol> | ||
| + | <jmolCheckbox> | ||
| + | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/gn/1gnw_consurf.spt"</scriptWhenChecked> | ||
| + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
| + | <text>to colour the structure by Evolutionary Conservation</text> | ||
| + | </jmolCheckbox> | ||
| + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
| + | <div style="clear:both"></div> | ||
| + | <div style="background-color:#fffaf0;"> | ||
| + | == Publication Abstract from PubMed == | ||
| + | Glutathione S-transferases (GST) are a family of multifunctional enzymes involved in the metabolization of a broad variety of xenobiotics and reactive endogenous compounds. The interest in plant glutathione S-transferases may be attributed to their agronomic value, since it has been demonstrated that glutathione conjugation for a variety of herbicides is the major resistance and selectivity factor in plants. The three-dimensional structure of glutathione S-transferase from the plant Arabidopsis thaliana has been solved by multiple isomorphous replacement and multiwavelength anomalous dispersion techniques at 3 A resolution and refined to a final crystallographic R-factor of 17.5% using data from 8 to 2.2 A resolution. The enzyme forms a dimer of two identical subunits each consisting of 211 residues. Each subunit is characterized by the GST-typical modular structure with two spatially distinct domains. Domain I consists of a central four-stranded beta-sheet flanked on one side by two alpha-helices and on the other side by an irregular segment containing three short 3(10)-helices, while domain II is entirely helical. The dimeric molecule is globular with a prominent large cavity formed between the two subunits. The active site is located in a cleft situated between domains I and II and each subunit binds two molecules of a competitive inhibitor S-hexylglutathione. Both hexyl moieties are oriented parallel and fill the H-subsite of the enzyme's active site. The glutathione peptide of one inhibitor, termed productive binding, occupies the G-subsite with multiple interactions similar to those observed for other glutathione S-transferases, while the glutathione backbone of the second inhibitor, termed unproductive binding, exhibits only weak interactions mediated by two polar contacts. A most striking difference from the mammalian glutathione S-transferases, which share a conserved catalytic tyrosine residue, is the lack of this tyrosine in the active site of the plant glutathione S-transferase. | ||
| - | + | Three-dimensional structure of glutathione S-transferase from Arabidopsis thaliana at 2.2 A resolution: structural characterization of herbicide-conjugating plant glutathione S-transferases and a novel active site architecture.,Reinemer P, Prade L, Hof P, Neuefeind T, Huber R, Zettl R, Palme K, Schell J, Koelln I, Bartunik HD, Bieseler B J Mol Biol. 1996 Jan 19;255(2):289-309. PMID:8551521<ref>PMID:8551521</ref> | |
| - | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
| + | </div> | ||
| - | + | ==See Also== | |
| - | + | *[[Glutathione S-transferase|Glutathione S-transferase]] | |
| - | == | + | == References == |
| - | [[ | + | <references/> |
| - | + | __TOC__ | |
| - | == | + | </StructureSection> |
| - | < | + | |
[[Category: Arabidopsis thaliana]] | [[Category: Arabidopsis thaliana]] | ||
[[Category: Glutathione transferase]] | [[Category: Glutathione transferase]] | ||
Revision as of 11:45, 28 September 2014
STRUCTURE OF GLUTATHIONE S-TRANSFERASE
| |||||||||||

