1m2w
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | [[ | + | ==Pseudomonas fluorescens mannitol 2-dehydrogenase ternary complex with NAD and D-mannitol== |
+ | <StructureSection load='1m2w' size='340' side='right' caption='[[1m2w]], [[Resolution|resolution]] 1.80Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[1m2w]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Pseudomonas_fluorescens Pseudomonas fluorescens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1M2W OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1M2W FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MTL:D-MANNITOL'>MTL</scene>, <scene name='pdbligand=NAD:NICOTINAMIDE-ADENINE-DINUCLEOTIDE'>NAD</scene><br> | ||
+ | <tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | ||
+ | <tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1lj8|1lj8]]</td></tr> | ||
+ | <tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">mtlD ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=294 Pseudomonas fluorescens])</td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Mannitol_2-dehydrogenase Mannitol 2-dehydrogenase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.1.1.67 1.1.1.67] </span></td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1m2w FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1m2w OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1m2w RCSB], [http://www.ebi.ac.uk/pdbsum/1m2w PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/m2/1m2w_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Long-chain mannitol dehydrogenases are secondary alcohol dehydrogenases that are of wide interest because of their involvement in metabolism and potential applications in agriculture, medicine, and industry. They differ from other alcohol and polyol dehydrogenases because they do not contain a conserved tyrosine and are not dependent on Zn(2+) or other metal cofactors. The structures of the long-chain mannitol 2-dehydrogenase (54 kDa) from Pseudomonas fluorescens in a binary complex with NAD(+) and ternary complex with NAD(+) and d-mannitol have been determined to resolutions of 1.7 and 1.8 A and R-factors of 0.171 and 0.176, respectively. These results show an N-terminal domain that includes a typical Rossmann fold. The C-terminal domain is primarily alpha-helical and mediates mannitol binding. The electron lone pair of Lys-295 is steered by hydrogen-bonding interactions with the amide oxygen of Asn-300 and the main-chain carbonyl oxygen of Val-229 to act as the general base. Asn-191 and Asn-300 are involved in a web of hydrogen bonding, which precisely orients the mannitol O2 proton for abstraction. These residues also aid in stabilizing a negative charge in the intermediate state and in preventing the formation of nonproductive complexes with the substrate. The catalytic lysine may be returned to its unprotonated state using a rectifying proton tunnel driven by Glu-292 oscillating among different environments. Despite low sequence homology, the closest structural neighbors are glycerol-3-phosphate dehydrogenase, N-(1-d-carboxylethyl)-l-norvaline dehydrogenase, UDP-glucose dehydrogenase, and 6-phosphogluconate dehydrogenase, indicating a possible evolutionary relationship among these enzymes. | ||
- | + | Crystal structure of Pseudomonas fluorescens mannitol 2-dehydrogenase binary and ternary complexes. Specificity and catalytic mechanism.,Kavanagh KL, Klimacek M, Nidetzky B, Wilson DK J Biol Chem. 2002 Nov 8;277(45):43433-42. Epub 2002 Aug 23. PMID:12196534<ref>PMID:12196534</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
==See Also== | ==See Also== | ||
*[[Alcohol dehydrogenase|Alcohol dehydrogenase]] | *[[Alcohol dehydrogenase|Alcohol dehydrogenase]] | ||
- | + | == References == | |
- | == | + | <references/> |
- | < | + | __TOC__ |
+ | </StructureSection> | ||
[[Category: Mannitol 2-dehydrogenase]] | [[Category: Mannitol 2-dehydrogenase]] | ||
[[Category: Pseudomonas fluorescens]] | [[Category: Pseudomonas fluorescens]] |
Revision as of 13:16, 28 September 2014
Pseudomonas fluorescens mannitol 2-dehydrogenase ternary complex with NAD and D-mannitol
|