1kvs
From Proteopedia
(Difference between revisions)
m (Protected "1kvs" [edit=sysop:move=sysop]) |
|||
Line 1: | Line 1: | ||
- | [[ | + | ==UDP-GALACTOSE 4-EPIMERASE COMPLEXED WITH UDP-PHENOL== |
+ | <StructureSection load='1kvs' size='340' side='right' caption='[[1kvs]], [[Resolution|resolution]] 2.15Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[1kvs]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1KVS OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1KVS FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=NAD:NICOTINAMIDE-ADENINE-DINUCLEOTIDE'>NAD</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene>, <scene name='pdbligand=UPG:URIDINE-5-DIPHOSPHATE-GLUCOSE'>UPG</scene><br> | ||
+ | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/UDP-glucose_4-epimerase UDP-glucose 4-epimerase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=5.1.3.2 5.1.3.2] </span></td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1kvs FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1kvs OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1kvs RCSB], [http://www.ebi.ac.uk/pdbsum/1kvs PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/kv/1kvs_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | UDP-galactose 4-epimerase plays a critical role in sugar metabolism by catalyzing the interconversion of UDP-galactose and UDP-glucose. Originally, it was assumed that the enzyme contained a "traditional" catalytic base that served to abstract a proton from the 4'-hydroxyl group of the UDP-glucose or UDP-galactose substrates during the course of the reaction. However, recent high-resolution X-ray crystallographic analyses of the protein from Escherichia coli have demonstrated the lack of an aspartate, a glutamate, or a histidine residue properly oriented within the active site cleft for serving such a functional role. Rather, the X-ray crystallographic investigation of the epimerase.NADH.UDP-glucose abortive complex from this laboratory has shown that both Ser 124 and Tyr 149 are located within hydrogen bonding distance to the 4'- and 3'-hydroxyl groups of the sugar, respectively. To test the structural role of Ser 124 in the reaction mechanism of epimerase, three site-directed mutant proteins, namely S124A, S124T, and S124V, were constructed and crystals of the S124A.NADH.UDP, S124A.NADH.UDP-glucose, S124T. NADH.UDP-glucose, and S124V.NADH.UDP-glucose complexes were grown. All of the crystals employed in this investigation belonged to the space group P3221 with the following unit cell dimensions: a = b = 83.8 A, c = 108.4 A, and one subunit per asymmetric unit. X-ray data sets were collected to at least 2.15 A resolution, and each protein model was subsequently refined to an R value of lower than 19.0% for all measured X-ray data. The investigations described here demonstrate that the decreases in enzymatic activities observed for these mutant proteins are due to the loss of a properly positioned hydroxyl group at position 124 and not to major tertiary and quaternary structural perturbations. In addition, these structures demonstrate the importance of a hydroxyl group at position 124 in stabilizing the anti conformation of the nicotinamide ring as observed in the previous structural analysis of the epimerase.NADH. UDP complex. | ||
- | + | Molecular structures of the S124A, S124T, and S124V site-directed mutants of UDP-galactose 4-epimerase from Escherichia coli.,Thoden JB, Gulick AM, Holden HM Biochemistry. 1997 Sep 2;36(35):10685-95. PMID:9271499<ref>PMID:9271499</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
+ | </div> | ||
- | + | ==See Also== | |
- | + | *[[UDP-galactose 4-epimerase|UDP-galactose 4-epimerase]] | |
- | == | + | == References == |
- | [[ | + | <references/> |
- | + | __TOC__ | |
- | == | + | </StructureSection> |
- | < | + | |
[[Category: Escherichia coli]] | [[Category: Escherichia coli]] | ||
[[Category: UDP-glucose 4-epimerase]] | [[Category: UDP-glucose 4-epimerase]] |
Revision as of 15:31, 28 September 2014
UDP-GALACTOSE 4-EPIMERASE COMPLEXED WITH UDP-PHENOL
|