1rcg
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | [[ | + | ==BULLFROG RED CELL L FERRITIN SULFATE/MN/PH 6.3== |
+ | <StructureSection load='1rcg' size='340' side='right' caption='[[1rcg]], [[Resolution|resolution]] 2.20Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[1rcg]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Rana_catesbeiana Rana catesbeiana]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1RCG OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1RCG FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BET:TRIMETHYL+GLYCINE'>BET</scene><br> | ||
+ | <tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CDNA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=8400 Rana catesbeiana])</td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1rcg FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1rcg OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1rcg RCSB], [http://www.ebi.ac.uk/pdbsum/1rcg PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/rc/1rcg_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Ferritin is a highly conserved multisubunit protein in animals, plants and microbes which assembles with cubic symmetry and transports hydrated iron ions and protons to and from a mineralized core in the protein interior. We report here the high resolution structures of recombinant amphibian red-cell L ferritin and two mutants solved under two sets of conditions. In one mutant, Glu56, 57, 58 and 60 were replaced with Ala, producing a lag phase in the kinetics of iron uptake. In the second mutant, His25 was replaced with Tyr with, at most, subtle effects on function. A molecule of betaine, used in the purification, is bound in all structures at the 2-fold axis near the recently identified heme binding site of bacterioferritin and horse spleen L ferritin. Comparisons of the five amphibian structures identify two regions of the molecule in which conformational flexibility may be related to function. The positions and interactions of a set of 10 to 18 side-chains, most of which are on the inner surface of the protein, are sensitive both to solution conditions and to the Glu-->Ala mutation. A subset of these side-chains and a chain of ordered solvent molecules extends from the vicinity of Glu56 to 58 and Glu60 to the 3-fold channel in the wild type protein and may be involved in the transport of either iron or protons. The "spine of hydration" is disrupted in the Glu-->Ala mutant. In contrast, H25Y mutation shifts the positions of backbone atoms between the site of the mutation and the 4-fold axis and side-chain positions throughout the structure; the largest changes in the position of backbone atoms are in the DE loop and E helix, approximately 10 A from the mutation site. In combination, these results indicate that solvation, structural plasticity and cooperative structural changes may play a role in ferritin function. Analogies with the structure and function of ion channel proteins such as annexins are noted. | ||
- | + | High resolution crystal structures of amphibian red-cell L ferritin: potential roles for structural plasticity and solvation in function.,Trikha J, Theil EC, Allewell NM J Mol Biol. 1995 May 19;248(5):949-67. PMID:7760335<ref>PMID:7760335</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
==See Also== | ==See Also== | ||
*[[Ferritin|Ferritin]] | *[[Ferritin|Ferritin]] | ||
- | + | == References == | |
- | == | + | <references/> |
- | < | + | __TOC__ |
+ | </StructureSection> | ||
[[Category: Rana catesbeiana]] | [[Category: Rana catesbeiana]] | ||
[[Category: Allewell, N M.]] | [[Category: Allewell, N M.]] |
Revision as of 21:05, 28 September 2014
BULLFROG RED CELL L FERRITIN SULFATE/MN/PH 6.3
|