We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.
1q2z
From Proteopedia
(Difference between revisions)
| Line 1: | Line 1: | ||
| - | [[ | + | ==The 3D solution structure of the C-terminal region of Ku86== |
| + | <StructureSection load='1q2z' size='340' side='right' caption='[[1q2z]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> | ||
| + | == Structural highlights == | ||
| + | <table><tr><td colspan='2'>[[1q2z]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1Q2Z OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1Q2Z FirstGlance]. <br> | ||
| + | </td></tr><tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">XRCC5 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])</td></tr> | ||
| + | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1q2z FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1q2z OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1q2z RCSB], [http://www.ebi.ac.uk/pdbsum/1q2z PDBsum]</span></td></tr> | ||
| + | <table> | ||
| + | == Evolutionary Conservation == | ||
| + | [[Image:Consurf_key_small.gif|200px|right]] | ||
| + | Check<jmol> | ||
| + | <jmolCheckbox> | ||
| + | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/q2/1q2z_consurf.spt"</scriptWhenChecked> | ||
| + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
| + | <text>to colour the structure by Evolutionary Conservation</text> | ||
| + | </jmolCheckbox> | ||
| + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
| + | <div style="clear:both"></div> | ||
| + | <div style="background-color:#fffaf0;"> | ||
| + | == Publication Abstract from PubMed == | ||
| + | In eukaryotes the non-homologous end-joining repair of double strand breaks in DNA is executed by a series of proteins that bring about the synapsis, preparation and ligation of the broken DNA ends. The mechanism of this process appears to be initiated by the obligate heterodimer (Ku70/Ku86) protein complex Ku that has affinity for DNA ends. Ku then recruits the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). The three-dimensional structures of the major part of the Ku heterodimer, representing the DNA-binding core, both free and bound to DNA are known from X-ray crystallography. However, these structures lack a region of ca 190 residues from the C-terminal region (CTR) of the Ku86 subunit (also known as Lupus Ku autoantigen p86, Ku80, or XRCC5) that includes the extreme C-terminal tail that is reported to be sufficient for DNA-PKcs-binding. We have examined the structural characteristics of the Ku86CTR protein expressed in bacteria. By deletion mutagenesis and heteronuclear NMR spectroscopy we localised a globular domain consisting of residues 592-709. Constructs comprising additional residues either to the N-terminal side (residues 543-709), or the C-terminal side (residues 592-732), which includes the putative DNA-PKcs-binding motif, yielded NMR spectra consistent with these extra regions lacking ordered structure. The three-dimensional solution structure of the core globular domain of the C-terminal region of Ku86 (Ku86CTR(592-709)) has been determined using heteronuclear NMR spectroscopy and dynamical simulated annealing using structural restraints from nuclear Overhauser effect spectroscopy, and scalar and residual dipolar couplings. The polypeptide fold comprises six regions of alpha-helical secondary structure that has an overall superhelical topology remotely homologous to the MIF4G homology domain of the human nuclear cap binding protein 80 kDa subunit and the VHS domain of the Drosophila protein Hrs, though strict analysis of the structures suggests that these domains are not functionally related. Two prominent hydrophobic pockets in the gap between helices alpha2 and alpha4 suggest a potential ligand-binding characteristic for this globular domain. | ||
| - | + | The 3D solution structure of the C-terminal region of Ku86 (Ku86CTR).,Harris R, Esposito D, Sankar A, Maman JD, Hinks JA, Pearl LH, Driscoll PC J Mol Biol. 2004 Jan 9;335(2):573-82. PMID:14672664<ref>PMID:14672664</ref> | |
| - | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
| - | + | </div> | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
==See Also== | ==See Also== | ||
*[[Helicase|Helicase]] | *[[Helicase|Helicase]] | ||
| - | + | == References == | |
| - | == | + | <references/> |
| - | < | + | __TOC__ |
| + | </StructureSection> | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: Driscoll, P C.]] | [[Category: Driscoll, P C.]] | ||
Revision as of 23:03, 28 September 2014
The 3D solution structure of the C-terminal region of Ku86
| |||||||||||
Categories: Homo sapiens | Driscoll, P C. | Esposito, D. | Harris, R. | Hinks, J A. | Maman, J D. | Pearl, L H. | Sankar, A. | Dna repair | Dna-pk | Ku | Ku80 | Ku86 | Nmr spectroscopy | Protein binding | Protein structure

