1ucl
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | [[ | + | ==Mutants of RNase Sa== |
+ | <StructureSection load='1ucl' size='340' side='right' caption='[[1ucl]], [[Resolution|resolution]] 1.82Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[1ucl]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Streptomyces_aureofaciens Streptomyces aureofaciens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1UCL OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1UCL FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene><br> | ||
+ | <tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1rgg|1rgg]], [[1uci|1uci]], [[1ucj|1ucj]], [[1uck|1uck]]</td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Ribonuclease_T(1) Ribonuclease T(1)], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.1.27.3 3.1.27.3] </span></td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1ucl FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ucl OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1ucl RCSB], [http://www.ebi.ac.uk/pdbsum/1ucl PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/uc/1ucl_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | We previously suggested that proteins gain more stability from the burial and hydrogen bonding of polar groups than from the burial of nonpolar groups (Pace, C. N. (2001) Biochemistry 40, 310-313). To study this further, we prepared eight Thr-to-Val mutants of RNase Sa, four in which the Thr side chain is hydrogen-bonded and four in which it is not. We measured the stability of these mutants by analyzing their thermal denaturation curves. The four hydrogen-bonded Thr side chains contribute 1.3 +/- 0.9 kcal/mol to the stability; those that are not still contribute 0.4 +/- 0.9 kcal/mol to the stability. For 40 Thr-to-Val mutants of 11 proteins, the average decrease in stability is 1.0 +/- 1.0 kcal/mol when the Thr side chain is hydrogen-bonded and 0.0 +/- 0.5 kcal/mol when it is not. This is clear evidence that hydrogen bonds contribute favorably to protein stability. In addition, we prepared four Val-to-Thr mutants of RNase Sa, measured their stability, and determined their crystal structures. In all cases, the mutants are less stable than the wild-type protein, with the decreases in stability ranging from 0.5 to 4.4 kcal/mol. For 41 Val-to-Thr mutants of 11 proteins, the average decrease in stability is 1.8 +/- 1.3 kcal/mol and is unfavorable for 40 of 41 mutants. This shows that placing an [bond]OH group at a site designed for a [bond]CH3 group is very unfavorable. So, [bond]OH groups can contribute favorably to protein stability, even if they are not hydrogen-bonded, if the site was selected for an [bond]OH group, but they will make an unfavorable contribution to stability, even if they are hydrogen-bonded, when they are placed at a site selected for a [bond]CH3 group. The contribution that polar groups make to protein stability depends strongly on their environment. | ||
- | + | The contribution of polar group burial to protein stability is strongly context-dependent.,Takano K, Scholtz JM, Sacchettini JC, Pace CN J Biol Chem. 2003 Aug 22;278(34):31790-5. Epub 2003 Jun 10. PMID:12799387<ref>PMID:12799387</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
==See Also== | ==See Also== | ||
*[[Ribonuclease|Ribonuclease]] | *[[Ribonuclease|Ribonuclease]] | ||
- | + | == References == | |
- | == | + | <references/> |
- | < | + | __TOC__ |
+ | </StructureSection> | ||
[[Category: Streptomyces aureofaciens]] | [[Category: Streptomyces aureofaciens]] | ||
[[Category: Pace, C N.]] | [[Category: Pace, C N.]] |
Revision as of 00:10, 29 September 2014
Mutants of RNase Sa
|