2ktf
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | [[ | + | ==Solution NMR structure of human polymerase iota UBM2 in complex with ubiquitin== |
+ | <StructureSection load='2ktf' size='340' side='right' caption='[[2ktf]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[2ktf]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2KTF OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2KTF FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">RPS27A, UBA80, UBCEP1, UBA52, UBCEP2, UBB, UBC ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens]), POLI, RAD30B ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])</td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2ktf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2ktf OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2ktf RCSB], [http://www.ebi.ac.uk/pdbsum/2ktf PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Cells have evolved mutagenic bypass mechanisms that prevent stalling of the replication machinery at DNA lesions. This process, translesion DNA synthesis (TLS), involves switching from high-fidelity DNA polymerases to specialized DNA polymerases that replicate through a variety of DNA lesions. In eukaryotes, polymerase switching during TLS is regulated by the DNA damage-triggered monoubiquitylation of PCNA. How the switch operates is unknown, but all TLS polymerases of the so-called Y-family possess PCNA and ubiquitin-binding domains that are important for their function. To gain insight into the structural mechanisms underlying the regulation of TLS by ubiquitylation, we have probed the interaction of ubiquitin with a conserved ubiquitin-binding motif (UBM2) of Y-family polymerase Poliota. Using NMR spectroscopy, we have determined the structure of a complex of human Poliota UBM2 and ubiquitin, revealing a novel ubiquitin recognition fold consisting of two alpha-helices separated by a central trans-proline residue conserved in all UBMs. We show that, different from the majority of ubiquitin complexes characterized to date, ubiquitin residue Ile44 only plays a modest role in the association of ubiquitin with Poliota UBM2. Instead, binding of UBM2 is centered on the recognition of Leu8 in ubiquitin, which is essential for the interaction. | ||
- | + | Structural Basis of Ubiquitin Recognition by Translesion Synthesis DNA Polymerase iota,Cui G, Benirschke RC, Tuan HF, Juranic N, Macura S, Botuyan MV, Mer G Biochemistry. 2010 Nov 30;49(47):10198-10207. Epub 2010 Nov 4. PMID:21049971<ref>PMID:21049971</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
==See Also== | ==See Also== | ||
*[[DNA polymerase|DNA polymerase]] | *[[DNA polymerase|DNA polymerase]] | ||
*[[Ubiquitin|Ubiquitin]] | *[[Ubiquitin|Ubiquitin]] | ||
- | + | == References == | |
- | == | + | <references/> |
- | < | + | __TOC__ |
+ | </StructureSection> | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: Benirschke, R.]] | [[Category: Benirschke, R.]] |
Revision as of 04:00, 29 September 2014
Solution NMR structure of human polymerase iota UBM2 in complex with ubiquitin
|