2j8y
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | [[ | + | ==STRUCTURE OF PBP-A ACYL-ENZYME COMPLEX WITH PENICILLIN-G== |
+ | <StructureSection load='2j8y' size='340' side='right' caption='[[2j8y]], [[Resolution|resolution]] 1.90Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[2j8y]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Synechococcus_elongatus Synechococcus elongatus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2J8Y OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2J8Y FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=PNM:OPEN+FORM+-+PENICILLIN+G'>PNM</scene><br> | ||
+ | <tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2j7v|2j7v]], [[2jbf|2jbf]], [[2j9o|2j9o]]</td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Serine-type_D-Ala-D-Ala_carboxypeptidase Serine-type D-Ala-D-Ala carboxypeptidase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.4.16.4 3.4.16.4] </span></td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2j8y FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2j8y OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2j8y RCSB], [http://www.ebi.ac.uk/pdbsum/2j8y PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/j8/2j8y_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Molecular evolution has always been a subject of discussions, and researchers are interested in understanding how proteins with similar scaffolds can catalyze different reactions. In the superfamily of serine penicillin-recognizing enzymes, D-alanyl-D-alanine peptidases and beta-lactamases are phylogenetically linked but feature large differences of reactivity towards their respective substrates. In particular, while beta-lactamases hydrolyze penicillins very fast, leading to their inactivation, these molecules inhibit d-alanyl-d-alanine peptidases by forming stable covalent penicilloyl enzymes. In cyanobacteria, we have discovered a new family of penicillin-binding proteins (PBPs) presenting all the sequence features of class A beta-lactamases but having a six-amino-acid deletion in the conserved Omega-loop and lacking the essential Glu166 known to be involved in the penicillin hydrolysis mechanism. With the aim of evolving a member of this family into a beta-lactamase, PBP-A from Thermosynechococcus elongatus has been chosen because of its thermostability. Based on sequence alignments, introduction of a glutamate in position 158 of the shorter Omega-loop afforded an enzyme with a 50-fold increase in the rate of penicillin hydrolysis. The crystal structures of PBP-A in the free and penicilloylated forms at 1.9 A resolution and of L158E mutant at 1.5 A resolution were also solved, giving insights in the catalytic mechanism of the proteins. Since all the active-site elements of PBP-A-L158E, including an essential water molecule, are almost perfectly superimposed with those of a class A beta-lactamase such as TEM-1, the question why our mutant is still 5 orders of magnitude less active as a penicillinase remains and our results emphasize how far we are from understanding the secrets of enzymes. Based on the few minor differences between the active sites of PBP-A and TEM-1, mutations were introduced in the L158E enzyme, but while activities on D-Ala-D-Ala mimicking substrates were severely impaired, further improvement in penicillinase activity was unsuccessful. | ||
- | + | Structure of PBP-A from Thermosynechococcus elongatus, a penicillin-binding protein closely related to class A beta-lactamases.,Urbach C, Evrard C, Pudzaitis V, Fastrez J, Soumillion P, Declercq JP J Mol Biol. 2009 Feb 13;386(1):109-20. Epub 2008 Dec 9. PMID:19100272<ref>PMID:19100272</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
==See Also== | ==See Also== | ||
*[[Carboxypeptidase|Carboxypeptidase]] | *[[Carboxypeptidase|Carboxypeptidase]] | ||
- | + | == References == | |
- | == | + | <references/> |
- | < | + | __TOC__ |
+ | </StructureSection> | ||
[[Category: Serine-type D-Ala-D-Ala carboxypeptidase]] | [[Category: Serine-type D-Ala-D-Ala carboxypeptidase]] | ||
[[Category: Synechococcus elongatus]] | [[Category: Synechococcus elongatus]] |
Revision as of 06:04, 29 September 2014
STRUCTURE OF PBP-A ACYL-ENZYME COMPLEX WITH PENICILLIN-G
|