3erw
From Proteopedia
(Difference between revisions)
| Line 1: | Line 1: | ||
| - | [[ | + | ==Crystal Structure of StoA from Bacillus subtilis== |
| + | <StructureSection load='3erw' size='340' side='right' caption='[[3erw]], [[Resolution|resolution]] 2.50Å' scene=''> | ||
| + | == Structural highlights == | ||
| + | <table><tr><td colspan='2'>[[3erw]] is a 7 chain structure with sequence from [http://en.wikipedia.org/wiki/Bacillus_subtilis Bacillus subtilis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3ERW OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3ERW FirstGlance]. <br> | ||
| + | </td></tr><tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | ||
| + | <tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">BSU13840, spoIVH, stoA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1423 Bacillus subtilis])</td></tr> | ||
| + | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3erw FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3erw OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3erw RCSB], [http://www.ebi.ac.uk/pdbsum/3erw PDBsum]</span></td></tr> | ||
| + | <table> | ||
| + | == Evolutionary Conservation == | ||
| + | [[Image:Consurf_key_small.gif|200px|right]] | ||
| + | Check<jmol> | ||
| + | <jmolCheckbox> | ||
| + | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/er/3erw_consurf.spt"</scriptWhenChecked> | ||
| + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
| + | <text>to colour the structure by Evolutionary Conservation</text> | ||
| + | </jmolCheckbox> | ||
| + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
| + | <div style="clear:both"></div> | ||
| + | <div style="background-color:#fffaf0;"> | ||
| + | == Publication Abstract from PubMed == | ||
| + | Bacillus subtilis StoA is an extracytoplasmic thiol-disulfide oxidoreductase (TDOR) important for the synthesis of the endospore peptidoglycan cortex protective layer. Here we demonstrate that StoA is membrane-associated in B. subtilis and report the crystal structure of the soluble protein lacking its membrane anchor. This showed that StoA adopts a thioredoxin-like fold with N-terminal and internal additions that are characteristic of extracytoplasmic TDORs. The CXXC active site of the crystallized protein was found to be in a mixture of oxidized and reduced states, illustrating that there is little conformational variation between redox states. The midpoint reduction potential was determined as -248 mV versus normal hydrogen electrode at pH 7 consistent with StoA fulfilling a reductive role in endospore biogenesis. pK(a) values of the active site cysteines, Cys-65 and Cys-68, were determined to be 5.5 and 7.8. Although Cys-68 is buried within the structure, both cysteines were found to be accessible to cysteine-specific alkylating reagents. In vivo studies of site-directed variants of StoA revealed that the active site cysteines are functionally important, as is Glu-71, which lies close to the active site and is conserved in many reducing extracytoplasmic TDORs. The structure and biophysical properties of StoA are very similar to those of ResA, a B. subtilis extracytoplasmic TDOR involved in cytochrome c maturation, raising important general questions about how these similar but non-redundant proteins achieve specificity. A detailed comparison of the two proteins demonstrates that relatively subtle differences, largely located around the active sites of the proteins, are sufficient to confer specificity. | ||
| - | + | Structure and functional properties of Bacillus subtilis endospore biogenesis factor StoA.,Crow A, Liu Y, Moller MC, Le Brun NE, Hederstedt L J Biol Chem. 2009 Apr 10;284(15):10056-66. Epub 2009 Jan 13. PMID:19144642<ref>PMID:19144642</ref> | |
| - | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
| - | + | </div> | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
==See Also== | ==See Also== | ||
*[[Protein disulfide oxidoreductase|Protein disulfide oxidoreductase]] | *[[Protein disulfide oxidoreductase|Protein disulfide oxidoreductase]] | ||
| - | + | == References == | |
| - | == | + | <references/> |
| - | < | + | __TOC__ |
| + | </StructureSection> | ||
[[Category: Bacillus subtilis]] | [[Category: Bacillus subtilis]] | ||
[[Category: Brun, N E.Le.]] | [[Category: Brun, N E.Le.]] | ||
Revision as of 10:48, 29 September 2014
Crystal Structure of StoA from Bacillus subtilis
| |||||||||||

