3dke
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | [[ | + | ==Polar and non-polar cavities in phage T4 lysozyme== |
+ | <StructureSection load='3dke' size='340' side='right' caption='[[3dke]], [[Resolution|resolution]] 1.25Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[3dke]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Enterobacteria_phage_t4 Enterobacteria phage t4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3DKE OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3DKE FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=AZI:AZIDE+ION'>AZI</scene>, <scene name='pdbligand=BME:BETA-MERCAPTOETHANOL'>BME</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=EPE:4-(2-HYDROXYETHYL)-1-PIPERAZINE+ETHANESULFONIC+ACID'>EPE</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=HED:2-HYDROXYETHYL+DISULFIDE'>HED</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene><br> | ||
+ | <tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | ||
+ | <tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[181l|181l]], [[3dmv|3dmv]], [[3dmx|3dmx]], [[3dmz|3dmz]], [[3dn0|3dn0]], [[3dn1|3dn1]], [[3dn2|3dn2]], [[3dn3|3dn3]], [[3dn4|3dn4]], [[3dn6|3dn6]], [[3dn8|3dn8]], [[3dna|3dna]]</td></tr> | ||
+ | <tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">E ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10665 Enterobacteria phage T4])</td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Lysozyme Lysozyme], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.17 3.2.1.17] </span></td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3dke FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3dke OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3dke RCSB], [http://www.ebi.ac.uk/pdbsum/3dke PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/dk/3dke_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | There is conflicting evidence as to whether cavities in proteins that are nonpolar and large enough to accommodate solvent are empty or are occupied by disordered water molecules. Here, we use multiple-wavelength x-ray data collected from crystals of the selenomethionine-substituted L99A/M102L mutant of T4 lysozyme to obtain a high-resolution electron density map free of bias that is unavoidably associated with conventional model-based structure determination and refinement. The mutant, L99A/M102L, has four cavities, two being polar in character and the other two nonpolar. Cavity 1 (polar, volume 45.2 A(3)) was expected to contain two well ordered water molecules, and this is confirmed in the experimental electron density map. Likewise, cavity 2 (polar, 16.9 A(3)) is confirmed to contain a single water molecule. Cavity 3 (nonpolar, 21.4 A(3)) was seen to be empty in conventional x-ray refinement, and this is confirmed in the experimental map. Unexpectedly, however, cavity 4 (nonpolar, volume 133.5 A(3)) was seen to contain diffuse electron density equivalent to approximately 1.5 water molecules. Although cavity 4 is largely nonpolar, it does have some polar character, and this apparently contributes to the presence of solvent. The cavity is large enough to accommodate four to five water molecules, and it appears that a hydrogen-bonded chain of three or more solvent molecules could occupy the cavity at a given time. The results are consistent with theoretical predictions that cavities in proteins that are strictly nonpolar will not contain solvent until the volume is large enough to permit mutually satisfying water-water hydrogen bonds. | ||
- | + | Use of experimental crystallographic phases to examine the hydration of polar and nonpolar cavities in T4 lysozyme.,Liu L, Quillin ML, Matthews BW Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14406-11. Epub 2008 Sep 9. PMID:18780783<ref>PMID:18780783</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
==See Also== | ==See Also== | ||
- | *[[ | + | *[[Lysozyme 3D structures|Lysozyme 3D structures]] |
- | + | == References == | |
- | == | + | <references/> |
- | < | + | __TOC__ |
+ | </StructureSection> | ||
[[Category: Enterobacteria phage t4]] | [[Category: Enterobacteria phage t4]] | ||
[[Category: Lysozyme]] | [[Category: Lysozyme]] |
Revision as of 12:53, 29 September 2014
Polar and non-polar cavities in phage T4 lysozyme
|