3htb

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
[[Image:3htb.png|left|200px]]
+
==2-propylphenol in complex with T4 lysozyme L99A/M102Q==
 +
<StructureSection load='3htb' size='340' side='right' caption='[[3htb]], [[Resolution|resolution]] 1.81&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[3htb]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Enterobacteria_phage_t4 Enterobacteria phage t4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3HTB OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3HTB FirstGlance]. <br>
 +
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BME:BETA-MERCAPTOETHANOL'>BME</scene>, <scene name='pdbligand=JZ4:2-PROPYLPHENOL'>JZ4</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene><br>
 +
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1lgu|1lgu]], [[3ht6|3ht6]], [[3ht7|3ht7]], [[3ht8|3ht8]], [[3ht9|3ht9]], [[3htd|3htd]], [[3htf|3htf]], [[3htg|3htg]], [[3hu8|3hu8]], [[3hu9|3hu9]], [[3hua|3hua]], [[3huk|3huk]], [[3huq|3huq]]</td></tr>
 +
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">E ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10665 Enterobacteria phage T4])</td></tr>
 +
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Lysozyme Lysozyme], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.17 3.2.1.17] </span></td></tr>
 +
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3htb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3htb OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3htb RCSB], [http://www.ebi.ac.uk/pdbsum/3htb PDBsum]</span></td></tr>
 +
<table>
 +
== Evolutionary Conservation ==
 +
[[Image:Consurf_key_small.gif|200px|right]]
 +
Check<jmol>
 +
<jmolCheckbox>
 +
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ht/3htb_consurf.spt"</scriptWhenChecked>
 +
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
 +
<text>to colour the structure by Evolutionary Conservation</text>
 +
</jmolCheckbox>
 +
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
 +
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
We present a combined experimental and modeling study of organic ligand molecules binding to a slightly polar engineered cavity site in T4 lysozyme (L99A/M102Q). For modeling, we computed alchemical absolute binding free energies. These were blind tests performed prospectively on 13 diverse, previously untested candidate ligand molecules. We predicted that eight compounds would bind to the cavity and five would not; 11 of 13 predictions were correct at this level. The RMS error to the measurable absolute binding energies was 1.8 kcal/mol. In addition, we computed "relative" binding free energies for six phenol derivatives starting from two known ligands: phenol and catechol. The average RMS error in the relative free energy prediction was 2.5 kcal/mol (phenol) and 1.1 kcal/mol (catechol). To understand these results at atomic resolution, we obtained x-ray co-complex structures for nine of the diverse ligands and for all six phenol analogs. The average RMSD of the predicted pose to the experiment was 2.0 A (diverse set), 1.8 A (phenol-derived predictions), and 1.2 A (catechol-derived predictions). We found that predicting accurate affinities and rank-orderings required near-native starting orientations of the ligand in the binding site. Unanticipated binding modes, multiple ligand binding, and protein conformational change all proved challenging for the free energy methods. We believe that these results can help guide future improvements in physics-based absolute binding free energy methods.
-
{{STRUCTURE_3htb| PDB=3htb | SCENE= }}
+
Predicting ligand binding affinity with alchemical free energy methods in a polar model binding site.,Boyce SE, Mobley DL, Rocklin GJ, Graves AP, Dill KA, Shoichet BK J Mol Biol. 2009 Dec 11;394(4):747-63. Epub 2009 Sep 24. PMID:19782087<ref>PMID:19782087</ref>
-
===2-propylphenol in complex with T4 lysozyme L99A/M102Q===
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
 
+
</div>
-
{{ABSTRACT_PUBMED_19782087}}
+
-
 
+
-
==About this Structure==
+
-
[[3htb]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Enterobacteria_phage_t4 Enterobacteria phage t4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3HTB OCA].
+
==See Also==
==See Also==
-
*[[Hen Egg-White (HEW) Lysozyme|Hen Egg-White (HEW) Lysozyme]]
+
*[[Lysozyme 3D structures|Lysozyme 3D structures]]
-
 
+
== References ==
-
==Reference==
+
<references/>
-
<ref group="xtra">PMID:019782087</ref><references group="xtra"/>
+
__TOC__
 +
</StructureSection>
[[Category: Enterobacteria phage t4]]
[[Category: Enterobacteria phage t4]]
[[Category: Lysozyme]]
[[Category: Lysozyme]]

Revision as of 13:18, 29 September 2014

2-propylphenol in complex with T4 lysozyme L99A/M102Q

3htb, resolution 1.81Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Views
Personal tools
Navigation
Toolbox