1cxw
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | + | ==THE SECOND TYPE II MODULE FROM HUMAN MATRIX METALLOPROTEINASE 2== | |
- | + | <StructureSection load='1cxw' size='340' side='right' caption='[[1cxw]], [[NMR_Ensembles_of_Models | 50 NMR models]]' scene=''> | |
- | + | == Structural highlights == | |
+ | <table><tr><td colspan='2'>[[1cxw]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1CXW OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1CXW FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Gelatinase_A Gelatinase A], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.4.24.24 3.4.24.24] </span></td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1cxw FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1cxw OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1cxw RCSB], [http://www.ebi.ac.uk/pdbsum/1cxw PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | == Disease == | ||
+ | [[http://www.uniprot.org/uniprot/MMP2_HUMAN MMP2_HUMAN]] Defects in MMP2 are the cause of Torg-Winchester syndrome (TWS) [MIM:[http://omim.org/entry/259600 259600]]; also known as multicentric osteolysis nodulosis and arthropathy (MONA). TWS is an autosomal recessive osteolysis syndrome. It is severe with generalized osteolysis and osteopenia. Subcutaneous nodules are usually absent. Torg-Winchester syndrome has been associated with a number of additional features including coarse face, corneal opacities, patches of thickened, hyperpigmented skin, hypertrichosis and gum hypertrophy. However, these features are not always present and have occasionally been observed in other osteolysis syndromes.<ref>PMID:11431697</ref> <ref>PMID:15691365</ref> <ref>PMID:16542393</ref> | ||
+ | == Function == | ||
+ | [[http://www.uniprot.org/uniprot/MMP2_HUMAN MMP2_HUMAN]] Ubiquitinous metalloproteinase that is involved in diverse functions such as remodeling of the vasculature, angiogenesis, tissue repair, tumor invasion, inflammation, and atherosclerotic plaque rupture. As well as degrading extracellular matrix proteins, can also act on several nonmatrix proteins such as big endothelial 1 and beta-type CGRP promoting vasoconstriction. Also cleaves KISS at a Gly-|-Leu bond. Appears to have a role in myocardial cell death pathways. Contributes to myocardial oxidative stress by regulating the activity of GSK3beta. Cleaves GSK3beta in vitro.<ref>PMID:9476898</ref> <ref>PMID:10559137</ref> <ref>PMID:11029402</ref> <ref>PMID:11751392</ref> <ref>PMID:11710594</ref> <ref>PMID:19493954</ref> <ref>PMID:22509276</ref> PEX, the C-terminal non-catalytic fragment of MMP2, posseses anti-angiogenic and anti-tumor properties and inhibits cell migration and cell adhesion to FGF2 and vitronectin. Ligand for integrinv/beta3 on the surface of blood vessels.<ref>PMID:9476898</ref> <ref>PMID:10559137</ref> <ref>PMID:11029402</ref> <ref>PMID:11751392</ref> <ref>PMID:11710594</ref> <ref>PMID:19493954</ref> <ref>PMID:22509276</ref> Isoform 2: Mediates the proteolysis of CHUK/IKKA and initiates a primary innate immune response by inducing mitochondrial-nuclear stress signaling with activation of the pro-inflammatory NF-kappaB, NFAT and IRF transcriptional pathways.<ref>PMID:9476898</ref> <ref>PMID:10559137</ref> <ref>PMID:11029402</ref> <ref>PMID:11751392</ref> <ref>PMID:11710594</ref> <ref>PMID:19493954</ref> <ref>PMID:22509276</ref> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/cx/1cxw_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | BACKGROUND: Matrix metalloproteinase 2 (MMP-2, gelatinase A, 72 kDa type IV collagenase) has an important role in extracellular matrix degradation during cell migration and tissue remodeling. It is involved in development, inflammation, wound healing, tumor invasion, metastasis and other physiological and pathological processes. The enzyme cleaves several types of collagen, elastin, fibronectin and laminin. Binding to collagen is mediated by three repeats homologous to fibronectin type II modules, which are inserted in the catalytic domain in proximity to the active site. RESULTS: We have determined the NMR solution structure of the second type II module from human MMP-2 (col-2). The module exhibits a typical type II fold with two short double-stranded antiparallel beta sheets and three large loops packed around a cluster of conserved aromatic residues. Backbone amide dynamics, derived from (15)N relaxation experiments, correlate well with solvent accessibility and intramolecular hydrogen bonding. A synthetic peptide with the collagen consensus sequence, (Pro-Pro-Gly)(6), is shown to interact with the module. CONCLUSIONS: Spectral perturbations induced by (Pro-Pro-Gly)(6) binding reveal the region involved in the interaction of col-2 with collagen. The binding surface comprises exposed aromatic residues Phe21, Tyr38, Trp40, Tyr47, Tyr53 and Phe55, and the neighboring Gly33-Gly37 segment. | ||
- | + | The second type II module from human matrix metalloproteinase 2: structure, function and dynamics.,Briknarova K, Grishaev A, Banyai L, Tordai H, Patthy L, Llinas M Structure. 1999 Oct 15;7(10):1235-45. PMID:10545322<ref>PMID:10545322</ref> | |
- | + | ||
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | ||
- | + | ||
- | + | ||
==See Also== | ==See Also== | ||
*[[Matrix metalloproteinase|Matrix metalloproteinase]] | *[[Matrix metalloproteinase|Matrix metalloproteinase]] | ||
- | + | == References == | |
- | == | + | <references/> |
- | + | __TOC__ | |
+ | </StructureSection> | ||
[[Category: Gelatinase A]] | [[Category: Gelatinase A]] | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] |
Revision as of 14:47, 29 September 2014
THE SECOND TYPE II MODULE FROM HUMAN MATRIX METALLOPROTEINASE 2
|