1pym
From Proteopedia
(Difference between revisions)
m (Protected "1pym" [edit=sysop:move=sysop]) |
|||
Line 1: | Line 1: | ||
- | [[ | + | ==PHOSPHOENOLPYRUVATE MUTASE FROM MOLLUSK IN WITH BOUND MG2-OXALATE== |
+ | <StructureSection load='1pym' size='340' side='right' caption='[[1pym]], [[Resolution|resolution]] 1.80Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[1pym]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Mytilus_edulis Mytilus edulis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1PYM OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1PYM FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=OXL:OXALATE+ION'>OXL</scene><br> | ||
+ | <tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Phosphoenolpyruvate_mutase Phosphoenolpyruvate mutase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=5.4.2.9 5.4.2.9] </span></td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1pym FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1pym OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1pym RCSB], [http://www.ebi.ac.uk/pdbsum/1pym PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/py/1pym_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | BACKGROUND: Phosphonate compounds are important secondary metabolites in nature and, when linked to macromolecules in eukaryotes, they might play a role in cell signaling. The first obligatory step in the biosynthesis of phosphonates is the formation of a carbon-phosphorus bond by converting phosphoenolpyruvate (PEP) to phosphonopyruvate (P-pyr), a reaction that is catalyzed by PEP mutase. The PEP mutase functions as a tetramer and requires magnesium ions (Mg2+). RESULTS: The crystal structure of PEP mutase from the mollusk Mytilus edulis, bound to the inhibitor Mg(2+)-oxalate, has been determined using multiwavelength anomalous diffraction, exploiting the selenium absorption edge of a selenomethionine-containing protein. The structure has been refined at 1.8 A resolution. PEP mutase adopts a modified alpha/beta barrel fold, in which the eighth alpha helix projects away from the alpha/beta barrel instead of packing against the beta sheet. A tightly associated dimer is formed, such that the two eighth helices are swapped, each packing against the beta sheet of the neighboring molecule. A dimer of dimers further associates into a tetramer. Mg(2+)-oxalate is buried close to the center of the barrel, at the C-terminal ends of the beta strands. CONCLUSIONS: The tetramer observed in the crystal is likely to be physiologically relevant. Because the Mg(2+)-oxalate is inaccessible to solvent, substrate binding and dissociation might be accompanied by conformational changes. A mechanism involving a phosphoenzyme intermediate is proposed, with Asp58 acting as the nucleophilic entity that accepts and delivers the phosphoryl group. The active-site architecture and the chemistry performed by PEP mutase are different from other alpha/beta-barrel proteins that bind pyruvate or PEP, thus the enzyme might represent a new family of alpha/beta-barrel proteins. | ||
- | + | Helix swapping between two alpha/beta barrels: crystal structure of phosphoenolpyruvate mutase with bound Mg(2+)-oxalate.,Huang K, Li Z, Jia Y, Dunaway-Mariano D, Herzberg O Structure. 1999 May;7(5):539-48. PMID:10378273<ref>PMID:10378273</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | == References == | |
- | + | <references/> | |
- | + | __TOC__ | |
- | + | </StructureSection> | |
- | + | ||
- | == | + | |
- | < | + | |
[[Category: Mytilus edulis]] | [[Category: Mytilus edulis]] | ||
[[Category: Phosphoenolpyruvate mutase]] | [[Category: Phosphoenolpyruvate mutase]] |
Revision as of 15:16, 29 September 2014
PHOSPHOENOLPYRUVATE MUTASE FROM MOLLUSK IN WITH BOUND MG2-OXALATE
|