1pym

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
m (Protected "1pym" [edit=sysop:move=sysop])
Line 1: Line 1:
-
[[Image:1pym.png|left|200px]]
+
==PHOSPHOENOLPYRUVATE MUTASE FROM MOLLUSK IN WITH BOUND MG2-OXALATE==
 +
<StructureSection load='1pym' size='340' side='right' caption='[[1pym]], [[Resolution|resolution]] 1.80&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[1pym]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Mytilus_edulis Mytilus edulis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1PYM OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1PYM FirstGlance]. <br>
 +
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=OXL:OXALATE+ION'>OXL</scene><br>
 +
<tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr>
 +
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Phosphoenolpyruvate_mutase Phosphoenolpyruvate mutase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=5.4.2.9 5.4.2.9] </span></td></tr>
 +
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1pym FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1pym OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1pym RCSB], [http://www.ebi.ac.uk/pdbsum/1pym PDBsum]</span></td></tr>
 +
<table>
 +
== Evolutionary Conservation ==
 +
[[Image:Consurf_key_small.gif|200px|right]]
 +
Check<jmol>
 +
<jmolCheckbox>
 +
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/py/1pym_consurf.spt"</scriptWhenChecked>
 +
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
 +
<text>to colour the structure by Evolutionary Conservation</text>
 +
</jmolCheckbox>
 +
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
 +
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
BACKGROUND: Phosphonate compounds are important secondary metabolites in nature and, when linked to macromolecules in eukaryotes, they might play a role in cell signaling. The first obligatory step in the biosynthesis of phosphonates is the formation of a carbon-phosphorus bond by converting phosphoenolpyruvate (PEP) to phosphonopyruvate (P-pyr), a reaction that is catalyzed by PEP mutase. The PEP mutase functions as a tetramer and requires magnesium ions (Mg2+). RESULTS: The crystal structure of PEP mutase from the mollusk Mytilus edulis, bound to the inhibitor Mg(2+)-oxalate, has been determined using multiwavelength anomalous diffraction, exploiting the selenium absorption edge of a selenomethionine-containing protein. The structure has been refined at 1.8 A resolution. PEP mutase adopts a modified alpha/beta barrel fold, in which the eighth alpha helix projects away from the alpha/beta barrel instead of packing against the beta sheet. A tightly associated dimer is formed, such that the two eighth helices are swapped, each packing against the beta sheet of the neighboring molecule. A dimer of dimers further associates into a tetramer. Mg(2+)-oxalate is buried close to the center of the barrel, at the C-terminal ends of the beta strands. CONCLUSIONS: The tetramer observed in the crystal is likely to be physiologically relevant. Because the Mg(2+)-oxalate is inaccessible to solvent, substrate binding and dissociation might be accompanied by conformational changes. A mechanism involving a phosphoenzyme intermediate is proposed, with Asp58 acting as the nucleophilic entity that accepts and delivers the phosphoryl group. The active-site architecture and the chemistry performed by PEP mutase are different from other alpha/beta-barrel proteins that bind pyruvate or PEP, thus the enzyme might represent a new family of alpha/beta-barrel proteins.
-
{{STRUCTURE_1pym| PDB=1pym | SCENE= }}
+
Helix swapping between two alpha/beta barrels: crystal structure of phosphoenolpyruvate mutase with bound Mg(2+)-oxalate.,Huang K, Li Z, Jia Y, Dunaway-Mariano D, Herzberg O Structure. 1999 May;7(5):539-48. PMID:10378273<ref>PMID:10378273</ref>
-
===PHOSPHOENOLPYRUVATE MUTASE FROM MOLLUSK IN WITH BOUND MG2-OXALATE===
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
 
+
</div>
-
{{ABSTRACT_PUBMED_10378273}}
+
== References ==
-
 
+
<references/>
-
==About this Structure==
+
__TOC__
-
[[1pym]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Mytilus_edulis Mytilus edulis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1PYM OCA].
+
</StructureSection>
-
 
+
-
==Reference==
+
-
<ref group="xtra">PMID:010378273</ref><references group="xtra"/>
+
[[Category: Mytilus edulis]]
[[Category: Mytilus edulis]]
[[Category: Phosphoenolpyruvate mutase]]
[[Category: Phosphoenolpyruvate mutase]]

Revision as of 15:16, 29 September 2014

PHOSPHOENOLPYRUVATE MUTASE FROM MOLLUSK IN WITH BOUND MG2-OXALATE

1pym, resolution 1.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Views
Personal tools
Navigation
Toolbox