1wgu
From Proteopedia
(Difference between revisions)
m (Protected "1wgu" [edit=sysop:move=sysop]) |
|||
Line 1: | Line 1: | ||
- | [[ | + | ==Solution Structure of the C-terminal Phosphotyrosine Interaction Domain of APBB2 from Mouse== |
+ | <StructureSection load='1wgu' size='340' side='right' caption='[[1wgu]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[1wgu]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1WGU OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1WGU FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">RIKEN cDNA 1200015I07 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10090 Mus musculus])</td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1wgu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1wgu OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1wgu RCSB], [http://www.ebi.ac.uk/pdbsum/1wgu PDBsum], [http://www.topsan.org/Proteins/RSGI/1wgu TOPSAN]</span></td></tr> | ||
+ | <table> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/wg/1wgu_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Fe65L1, a member of the Fe65 family, is an adaptor protein that interacts with the cytoplasmic domain of Alzheimer amyloid precursor protein (APP) through its C-terminal phosphotyrosine interaction/phosphotyrosine binding (PID/PTB) domain. In the present study, the solution structures of the C-terminal PID domain of mouse Fe65L1, alone and in complex with a 32-mer peptide (DAAVTPEERHLSKMQQNGYENPTYKFFEQMQN) derived from the cytoplasmic domain of APP, were determined using NMR spectroscopy. The C-terminal PID domain of Fe65L1 alone exhibits a canonical PID/PTB fold, whereas the complex structure reveals a novel mode of peptide binding. In the complex structure, the NPTY motif forms a type-I beta-turn, and the residues immediately N-terminal to the NPTY motif form an antiparallel beta-sheet with the beta5 strand of the PID domain, the binding mode typically observed in the PID/PTB.peptide complex. On the other hand, the N-terminal region of the peptide forms a 2.5-turn alpha-helix and interacts extensively with the C-terminal alpha-helix and the peripheral regions of the PID domain, representing a novel mode of peptide binding that has not been reported previously for the PID/PTB.peptide complex. The indispensability of the N-terminal region of the peptide for the high affinity of the PID-peptide interaction is consistent with NMR titration and isothermal calorimetry data. The extensive binding features of the PID domain of Fe65L1 with the cytoplasmic domain of APP provide a framework for further understanding of the function, trafficking, and processing of APP modulated by adapter proteins. | ||
- | + | Structure of the C-terminal phosphotyrosine interaction domain of Fe65L1 complexed with the cytoplasmic tail of amyloid precursor protein reveals a novel peptide binding mode.,Li H, Koshiba S, Hayashi F, Tochio N, Tomizawa T, Kasai T, Yabuki T, Motoda Y, Harada T, Watanabe S, Inoue M, Hayashizaki Y, Tanaka A, Kigawa T, Yokoyama S J Biol Chem. 2008 Oct 3;283(40):27165-78. Epub 2008 Jul 23. PMID:18650440<ref>PMID:18650440</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | == References == | |
- | + | <references/> | |
- | + | __TOC__ | |
- | + | </StructureSection> | |
- | + | ||
- | == | + | |
- | < | + | |
[[Category: Mus musculus]] | [[Category: Mus musculus]] | ||
[[Category: Hayashi, F.]] | [[Category: Hayashi, F.]] |
Revision as of 18:43, 29 September 2014
Solution Structure of the C-terminal Phosphotyrosine Interaction Domain of APBB2 from Mouse
|
Categories: Mus musculus | Hayashi, F. | Inoue, M. | Kigawa, T. | Koshiba, S. | Li, H. | RSGI, RIKEN Structural Genomics/Proteomics Initiative. | Yokoyama, S. | Amyloid disease | Phosphotyrosine-interaction domain | Protein binding | Riken structural genomics/proteomics initiative | Rsgi | Structural genomic