1x08
From Proteopedia
(Difference between revisions)
m (Protected "1x08" [edit=sysop:move=sysop]) |
|||
Line 1: | Line 1: | ||
- | [[ | + | ==Crystal structure of D26A mutant UPPs in complex with Mg, IPP and FsPP== |
+ | <StructureSection load='1x08' size='340' side='right' caption='[[1x08]], [[Resolution|resolution]] 1.90Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[1x08]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1X08 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1X08 FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=FPS:S-[(2E,6E)-3,7,11-TRIMETHYLDODECA-2,6,10-TRIENYL]+TRIHYDROGEN+THIODIPHOSPHATE'>FPS</scene>, <scene name='pdbligand=IPE:3-METHYLBUT-3-ENYL+TRIHYDROGEN+DIPHOSPHATE'>IPE</scene><br> | ||
+ | <tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1jp3|1jp3]], [[1v7u|1v7u]], [[1ueh|1ueh]], [[1x06|1x06]], [[1x07|1x07]], [[1x09|1x09]]</td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Di-trans,poly-cis-decaprenylcistransferase Di-trans,poly-cis-decaprenylcistransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.5.1.31 2.5.1.31] </span></td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1x08 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1x08 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1x08 RCSB], [http://www.ebi.ac.uk/pdbsum/1x08 PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/x0/1x08_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Undecaprenyl pyrophosphate synthase (UPPs) catalyzes the consecutive condensation reactions of a farnesyl pyrophosphate (FPP) with eight isopentenyl pyrophosphates (IPP), in which new cis-double bonds are formed, to generate undecaprenyl pyrophosphate that serves as a lipid carrier for peptidoglycan synthesis of bacterial cell wall. The structures of Escherichia coli UPPs were determined previously in an orthorhombic crystal form as an apoenzyme, in complex with Mg(2+)/sulfate/Triton, and with bound FPP. In a further search of its catalytic mechanism, the wild-type UPPs and the D26A mutant are crystallized in a new trigonal unit cell with Mg(2+)/IPP/farnesyl thiopyrophosphate (an FPP analogue) bound to the active site. In the wild-type enzyme, Mg(2+) is coordinated by the pyrophosphate of farnesyl thiopyrophosphate, the carboxylate of Asp(26), and three water molecules. In the mutant enzyme, it is bound to the pyrophosphate of IPP. The [Mg(2+)] dependence of the catalytic rate by UPPs shows that the activity is maximal at [Mg(2+)] = 1 mm but drops significantly when Mg(2+) ions are in excess (50 mm). Without Mg(2+), IPP binds to UPPs only at high concentration. Mutation of Asp(26) to other charged amino acids results in significant decrease of the UPPs activity. The role of Asp(26) is probably to assist the migration of Mg(2+) from IPP to FPP and thus initiate the condensation reaction by ionization of the pyrophosphate group from FPP. Other conserved residues, including His(43), Ser(71), Asn(74), and Arg(77), may serve as general acid/base and pyrophosphate carrier. Our results here improve the understanding of the UPPs enzyme reaction significantly. | ||
- | + | Crystal structures of undecaprenyl pyrophosphate synthase in complex with magnesium, isopentenyl pyrophosphate, and farnesyl thiopyrophosphate: roles of the metal ion and conserved residues in catalysis.,Guo RT, Ko TP, Chen AP, Kuo CJ, Wang AH, Liang PH J Biol Chem. 2005 May 27;280(21):20762-74. Epub 2005 Mar 23. PMID:15788389<ref>PMID:15788389</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
+ | </div> | ||
- | + | ==See Also== | |
- | + | *[[Undecaprenyl pyrophosphate synthase|Undecaprenyl pyrophosphate synthase]] | |
- | == | + | == References == |
- | [[ | + | <references/> |
- | + | __TOC__ | |
- | == | + | </StructureSection> |
- | < | + | |
[[Category: Di-trans,poly-cis-decaprenylcistransferase]] | [[Category: Di-trans,poly-cis-decaprenylcistransferase]] | ||
[[Category: Escherichia coli]] | [[Category: Escherichia coli]] |
Revision as of 20:00, 29 September 2014
Crystal structure of D26A mutant UPPs in complex with Mg, IPP and FsPP
|