1w34

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
m (Protected "1w34" [edit=sysop:move=sysop])
Line 1: Line 1:
-
[[Image:1w34.png|left|200px]]
+
==FERREDOXIN-NADP REDUCTASE (MUTATION: Y 303 S)==
 +
<StructureSection load='1w34' size='340' side='right' caption='[[1w34]], [[Resolution|resolution]] 1.73&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[1w34]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Anabaena_sp. Anabaena sp.]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1W34 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1W34 FirstGlance]. <br>
 +
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=FAD:FLAVIN-ADENINE+DINUCLEOTIDE'>FAD</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene><br>
 +
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1b2r|1b2r]], [[1bjk|1bjk]], [[1bqe|1bqe]], [[1e62|1e62]], [[1e63|1e63]], [[1e64|1e64]], [[1ewy|1ewy]], [[1gjr|1gjr]], [[1go2|1go2]], [[1gr1|1gr1]], [[1h42|1h42]], [[1h85|1h85]], [[1ogi|1ogi]], [[1ogj|1ogj]], [[1qgy|1qgy]], [[1qgz|1qgz]], [[1qh0|1qh0]], [[1que|1que]], [[1quf|1quf]], [[1w35|1w35]], [[1w87|1w87]], [[2bmw|2bmw]], [[2bsa|2bsa]]</td></tr>
 +
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Ferredoxin--NADP(+)_reductase Ferredoxin--NADP(+) reductase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.18.1.2 1.18.1.2] </span></td></tr>
 +
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1w34 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1w34 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1w34 RCSB], [http://www.ebi.ac.uk/pdbsum/1w34 PDBsum]</span></td></tr>
 +
<table>
 +
== Evolutionary Conservation ==
 +
[[Image:Consurf_key_small.gif|200px|right]]
 +
Check<jmol>
 +
<jmolCheckbox>
 +
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/w3/1w34_consurf.spt"</scriptWhenChecked>
 +
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
 +
<text>to colour the structure by Evolutionary Conservation</text>
 +
</jmolCheckbox>
 +
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
 +
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Ferredoxin-NADP+ reductase (FNR) catalyzes the reduction of NADP+ to NADPH in an overall reversible reaction, showing some differences in the mechanisms between cyanobacterial and higher plant FNRs. During hydride transfer it is proposed that the FNR C-terminal Tyr is displaced by the nicotinamide. Thus, this C-terminal Tyr might be involved not only in modulating the flavin redox properties, as already shown, but also in nicotinamide binding and hydride transfer. FNR variants from the cyanobacterium Anabaena in which the C-terminal Tyr has been replaced by Trp, Phe, or Ser have been produced. All FNR variants show enhanced NADP+ and NAD+ binding, especially Tyr303Ser, which correlates with a noticeable improvement of NADH-dependent reactions. Nevertheless, the Tyr303Ser variant shows a decrease in the steady-state kcat value with NADPH. Fast kinetic analysis of the hydride transfer shows that the low efficiency observed for this mutant FNR under steady-state conditions is not due to a lack of catalytic ability but rather to the strong enzyme-coenzyme interaction. Three-dimensional structures for Tyr303Ser and Tyr303Trp variants and its complexes with NADP+ show significant differences between plant and cyanobacterial FNRs. Our results suggest that modulation of coenzyme affinity is highly influenced by the strength of the C-terminus-FAD interaction and that subtle changes between plant and cyanobacterial structures are able to modify the energy of that interaction. Additionally, it is shown that the C-terminal Tyr of FNR lowers the affinity for NADP+/H to levels compatible with steady-state turnover during the catalytic cycle, but it is not involved in the hydride transfer itself.
-
{{STRUCTURE_1w34| PDB=1w34 | SCENE= }}
+
C-terminal tyrosine of ferredoxin-NADP+ reductase in hydride transfer processes with NAD(P)+/H.,Tejero J, Perez-Dorado I, Maya C, Martinez-Julvez M, Sanz-Aparicio J, Gomez-Moreno C, Hermoso JA, Medina M Biochemistry. 2005 Oct 18;44(41):13477-90. PMID:16216071<ref>PMID:16216071</ref>
-
===FERREDOXIN-NADP REDUCTASE (MUTATION: Y 303 S)===
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
 
+
</div>
-
{{ABSTRACT_PUBMED_16216071}}
+
== References ==
-
 
+
<references/>
-
==About this Structure==
+
__TOC__
-
[[1w34]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Anabaena_sp. Anabaena sp.]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1W34 OCA].
+
</StructureSection>
-
 
+
-
==Reference==
+
-
<ref group="xtra">PMID:016216071</ref><references group="xtra"/>
+
[[Category: Anabaena sp.]]
[[Category: Anabaena sp.]]
[[Category: Gomez-Moreno, C.]]
[[Category: Gomez-Moreno, C.]]

Revision as of 21:24, 29 September 2014

FERREDOXIN-NADP REDUCTASE (MUTATION: Y 303 S)

1w34, resolution 1.73Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Views
Personal tools
Navigation
Toolbox